ON \(\text{gr}^*\)-HOMEO MORPHISM IN TOPOLOGICAL SPACES

K.Indirani, P.Sathishmohan and V.Rajendran

1Department of Mathematics, Nirmala College for Woman, Coimbatore, TN, India.
2,3Department of Mathematics, KSG college, Coimbatore, TN, India.
E-mail: iiiscsathish@yahoo.co.in, mathsraj05@yahoo.co.in

Abstract: This paper deals with \(\text{gr}^*\)-closed maps, \(\text{gr}^*\)-open maps, \(\text{gr}^*\)-homeomorphism, \(\text{gr}^{**}\)-homeomorphism and study their properties. Using these new types of maps, several characterizations and properties have been obtained.

Keywords: \(\text{gr}^*\)-closed maps, \(\text{gr}^*\)-open maps, \(\text{gr}^*\)-homeomorphism, and \(\text{gr}^{**}\)-homeomorphism.

1. INTRODUCTION

Generalized closed mappings were introduced and studied by Malghan[9]. Generalized open maps, rg-closed maps, g*-closed maps, g*-open maps, gpr-closed maps have been introduced and studied by sundaram [15], Arockiarani [1], shiek John[13], and Gnanamal[3] respectively. We give the definitions of some of them which are used our present study. The purpose of this paper is to introduce the concept of new class of maps called \(\text{gr}^*\)-closed maps and \(\text{gr}^*\)-open maps. Further we introduce \(\text{gr}^*\)-homeomorphism, \(\text{gr}^{**}\)-homeomorphism and discuss their properties.

2. PRELIMINARIES

Definition 2.1 A subset \((x, \tau)\) is said to be
1) g-closed [8] set if, \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).
2) Regular open [14] if \(A = \text{int}(\text{cl}(A))\).
3) \(\text{gr}^*\)-closed [4] if \(Rcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g-open in \(X\).
4) rg-closed [11] if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \(X\).
5) gpr-closed [3] if \(pcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular in \(X\).

The complements of the above mentioned closed sets and their respective open sets.

Definition 2.2 A map \(f: X \rightarrow Y\) is said to be
1) Continuous function [1] if \(f^{-1}(V)\) is closed in \(X\) for every closed set \(V\) in \(Y\).
2) g-Continuous function [2], if \(f^{-1}(V)\) is g-closed in \(X\) for every closed set \(V\) in \(Y\).
3) rg-continuous [11] if \(f^{-1}(V)\) is rg-closed in \(X\) for every closed set \(V\) in \(Y\).
4) gpr-continuous [3] if \(f^{-1}(V)\) is gpr-closed in \(X\) for every closed set \(V\) in \(Y\).
5) \(\text{gr}^*\)-continuous [5] if \(f^{-1}(V)\) is \(\text{gr}^*\)-closed in \(X\) for every closed set \(V\) in \(Y\).

Definition 2.3 A topological space \((X, \tau)\) is said to be
i) $T_{1/2}$ space if every closed set is closed.

ii) a T_{gr} space if every gr^*-closed set is closed.

Definition 2.4 A bijective function f: $(X,\tau)\rightarrow (Y,\sigma)$ is called

i) g-homeomorphism [10] if both f and f^\prime are g-continuous.

ii) rg-homeomorphism [11] if both f and f^\prime are rg-continuous.

iii) gp^*-homeomorphism [3] if both f and f^\prime are gp^*-continuous.

Definition 2.5 A map $f:(X,\tau)\rightarrow (Y,\sigma)$ is called

(i) R-closed map (R-open map) [7], if the image $f(A)$ is R-closed (R-open) in (Y,σ) for each closed (open) set A in (X,τ).

(ii) $\pi g\theta$-closed [6], if the image of every closed set in (X,τ) is $\pi g\theta$-closed in (Y,σ).

(iii) gp^*-closed map (briefly gp^*-closed) [12], if the image of every closed set in X is gp^*-closed in Y.

(iv) Regular generalized α-closed (briefly, $r g a$-closed) [16], if the image of every closed set in (X,τ) is $rg a$-closed in (Y,σ).

3. gr* - CLOSED MAP

Definition 3.1 Let f: $(X,\tau)\rightarrow (Y,\sigma)$ is said to be generalized regular star (briefly gr^*) Closed map if the image of every closed set in (X,τ) is gr^*-closed in (Y,σ).

Theorem 3.2

(i) Every closed map is gr^*-closed map.

(ii) Every r-closed map is gr^*-closed map.

(iii) Every gr^*-closed map is g-closed map.

(iv) Every gr^*-closed map is rg-closed map.

(v) Every gr^*-closed map is gpr-closed map.

Proof: Follows from the definition

Remark: 3.3 The converse of the above theorem need not be true as seen from the following examples.

Example: 3.4 (i) Let $X = \{a,b,c\}$, $\tau = \{\Phi, \{b\}, X\}$, $\sigma = \{\Phi, \{b,c\}, Y\}$ Let f be an identity map such that f: $X\rightarrow Y$ then f is gr^*-closed but not a closed map.

(ii) Let $X = \{a,b,c\}$, $\tau = \{\Phi, \{a\}, \{a,b\}, X\}$, and $\sigma = \{\Phi, \{c\}, \{a,c\}, Y\}$. Then define f: $X\rightarrow Y$ be an identity map, then f is gr^*-closed map but not r-closed map.

(iii) Let $X = \{a,b,c\}$, $\tau = \{\Phi, \{b\}, \{b,c\}, \{a,b\}, X\}$, and $\sigma = \{\Phi, \{a\}, \{a,b\}, Y\}$. Define a map f: $X\rightarrow Y$ by $f(a) = b$, $f(b) = a$, $f(c) = c$ then f is g-closed but not gr^*-closed map.

(iv) Let $X = \{a,b,c\}$, $\tau = \{\Phi, \{a\}, \{b,c\}, X\}$, and $\sigma = \{\Phi, \{a\}, \{c\}, \{a,c\}, Y\}$. Then f: $X\rightarrow Y$ be an identity map. Then f is rg-closed map but not gr^*-closed map.

(v) Let $X = \{a,b,c\}$, $\tau = \{\Phi, \{a\}, \{b\}, \{a,b\}, X\}$, and $\sigma = \{\Phi, \{c\}, Y\}$. Then f: $X\rightarrow Y$ be an identity then f is $g pr$ – closed map but not gr^*-closed map.

Theorem 3.5 A map f: $(X,\tau)\rightarrow (Y,\sigma)$ is gr^*-closed if and only if for each subset S of (Y,σ) and each open set U containing $f^{-1}(s)$ there is an gr^*-open set V of (Y,σ) such that $S\subseteq V$ and $f^{-1}(V) \subseteq U$.

© JGRMA 2014, All Rights Reserved
Proof: Suppose f is gr^*-closed set of (X, τ). Let $S \subseteq Y$ and U be an open set of (X, τ) such that $f^-(S) \subseteq U$. Now $X-U$ is closed set in (X, τ). Since f is gr^*-closed, $(X-U)$ is an gr^*-closed set in (Y, σ). Then $V \subseteq Y$ if $f(X-U)$ is gr^*-open set in (Y, σ). $f^-(S) \subseteq U$ implies $S \subseteq V$ and $f^-(V) = X - f^-(f(X-U)) \subseteq X-(X-U) = U$, i.e., $f^-(V) \subseteq U$. Conversely, let F be a closed set of (X, τ). Then $f^-(f(F)) \subseteq F$ is an open set in (X, τ). By hypothesis, there exists an gr^*-open set V in (Y, σ) such that $f^-(f(F)) \subseteq V$ and $f^-(V) \subseteq F$ and so $F \subseteq f^-(f(V))$. Hence $V \subseteq (f^-(f(V)) \subseteq V$ which implies $f(F) \subseteq V$. Since V is gr^*-closed, $f(F)$ is gr^*-closed. That is $f(F)$ is gr^*-closed in (Y, σ). Therefore f is gr^*-closed map.

Theorem 3.6 If $f: (X, \tau) \rightarrow (Y, \sigma)$ is closed map and $g: (Y, \sigma) \rightarrow (Z, \eta)$ is gr^*-closed map. Then the composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is gr^*-closed map.

Proof: Let F be any closed set in (X, τ). Since f is a closed map, $f(F)$ is closed set in (Y, σ). Since g is gr^*-closed map, $g(f(F)) = g \circ f(F)$ is gr^*-closed set in (Z, η). Thus $g \circ f$ is gr^*-closed map.

Remark 3.7 If $f: (X, \tau) \rightarrow (Y, \sigma)$ is gr^*-closed map and $g: (Y, \sigma) \rightarrow (Z, \eta)$ is closed map, then the composition need not be an gr^*-closed map as seen from the following example.

Example 3.8 Let $X = Y = Z = \{a,b,c,d\}$, $\tau = \{\emptyset, \{c\}, \{a,b\}, \{a,b,c\}, X\}$, $\sigma = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, Y\}$, $\eta = \{\emptyset, \{b\}, \{d\}, \{b,c\}, \{b,c,d\}, Z\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$, be an identity map and $g: (Y, \sigma) \rightarrow (Z, \eta)$ by $g(a) = d$, $g(b) = b$, $g(c) = c$, $g(d) = a$. Then f is gr^*-closed map and g is a closed map. But $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is not an gr^*-closed map.

Theorem 3.9 If $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be two gr^*-closed maps where (Y, σ) is T_{gr^*}-space. Then the composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is gr^*-closed.

Proof: Let A be a closed set of (X, τ). Since f is g-closed, $f(A)$ is g-closed in (Y, σ), by hypothesis $f(A)$ is closed. Since g is gr^*-closed map, $g(f(A)) = g \circ f(A)$ is gr^*-closed in (Z, η). Thus $g \circ f$ is gr^*-closed.

Theorem 3.10 Let $f: (X, \tau) \rightarrow (Y, \sigma)$, $g: (Y, \sigma) \rightarrow (Z, \eta)$ be two mappings such that their composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ be gr^*-closed map. Then the following statements are true

(i) If f is continuous and surjective, Then g is gr^*-closed.
(ii) If g is gr^*-irresolute and injective, then f is gr^*-closed.
(iii) If f is g-continuous, surjective and (X, τ) is a $T_{1/2}$ space then g is gr^*-closed.

Proof: (i) Let A be a closed set of (Y, σ). Since f is continuous, $f^{-1}(A)$ is closed in (X, τ). $g \circ f$ is gr^*-closed, therefore $g \circ f(f^{-1}(A))$ is gr^*-closed in (Z, η). That is $g(A)$ is gr^*-closed in (Z, η). Since f is surjective. Therefore g is gr^*-closed.

(ii) Let A be a closed set of (X, τ). Since $g \circ f$ is gr^*-closed, $g \circ f(B)$ is gr^*-closed in (Z, η). g is gr^*- irresolute, $g^{-1}(g \circ f(B))$ is gr^*-closed set in (Y, σ).

(iii) Let c be a closed set of (Y, σ). Since f is g-continuous $f^{-1}(c)$ is closed in (X, τ). Since (X, τ) is a $T_{1/2}$ space, $f^{-1}(c)$ is closed. By hypothesis, $g(f^{-1}(c)) = g(c)$ is gr^*-closed in (Z, η). Since f is surjective. Therefore g is gr^*-closed.

4. gr^*-OPEN MAP

Definition 4.1 A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called gr^*-open map if the image $f(A)$ is gr^*-open in (Y, σ) for each open set A in (X, τ).

Theorem 4.2 Every open map is gr^*-open but not conversely.

Proof: obvious.

Example 4.3 Let $X = Y = \{a,b,c\}$, $\tau = \{\emptyset, \{c\}, \{a,b\}, \{a,b,c\}, X\}$ $\sigma = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, Y\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ the identity map, then f is gr^*-open but it is not an open map.

Theorem 4.4 For any bijection map $f: (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent.

a) $f^*: (Y, \sigma) \rightarrow (X, \tau)$ is gr^*-continuous.

b) f is gr^*-open map and

c) f is gr^*-closed map.

Proof: (a)â†’(b): Let U be an open et of (X, τ). By assumption $(f^*)^{-1}(U) = f(U)$ is gr^*-open in (Y, σ) and so f is gr^*-open.

© JGRMA 2014, All Rights Reserved
(b)→(c): Let F be a closed set of (X, τ). Then \(F^C \) is open set on (X, τ). By hypothesis, \(f(F)^C \) is \(g^* \)-open in (Y, σ). That is, \(f(F)^C = f(F)^C \) is \(g^* \)-open in (Y, σ). Thus \(f(F) \) is \(g^* \)-closed in Y. Hence f is \(g^* \)-closed.

(c)→(a): Let F be a closed set in X. By hypothesis \(f(F) \) is \(g^* \)-closed in Y. That is \(f(F) = (f^{-1})^{-1}(F) \) and therefore \(f^{-1} \) is continuous.

5. \(g^* \)-homeomorphism

Definition 5.1 A bijection \(f: (X, \tau) \to (Y, \sigma) \) is called generalized regular star (briefly, \(g^* \)) homeomorphism if \(f \) and \(f^{-1} \) are generalized regular star (briefly, \(g^* \)) continuous.

Example 5.2 Consider \(X = Y = \{a, b, c, d\} \) with topology \(\tau = \{\emptyset, \{a, b\}, \{a, b, c\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, Y\} \). Let \(f: X \to Y \) be a map defined by \(f(a) = a, f(b) = b, f(c) = c \) and \(f(d) = d \). Then \(f \) is bijective, \(g^* \)-continuous and \(f^{-1} \) is \(g^* \)-continuous. Hence \(f \) is \(g^* \)-homeomorphism.

Theorem 5.3 Every \(g^* \)-homeomorphism is \(g^* \)-homeomorphism but not conversely.

Proof: Let \(f: (X, \tau) \to (Y, \sigma) \) be a homeomorphism. Then \(f \) and \(f^{-1} \) are continuous and \(f \) is bijection. Since every continuous function is \(g^* \)-continuous, \(f \) and \(f^{-1} \) are \(g^* \)-continuous. Hence \(f \) is \(g^* \)-homeomorphism.

Example 5.4 Consider \(X = Y = \{a, b, c, d\} \) with topologies \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, \{b, c\}, \{a, b, c\}, Y\} \). Let \(f: X \to Y \) be the identity map. Then \(f \) is \(g^* \)-homeomorphism. But it is not a regular homeomorphism. Since the inverse image of the closed set \(\{c, d\} \) in \(X \) is \(\{c, d\} \) is not closed in \(Y \).

Theorem 5.5 Every regular homeomorphism is \(g^* \)-homeomorphism, but not conversely.

Proof: The proof follows from the theorem 3.2.

Example 5.6 Consider \(X = Y = \{a, b, c, d\} \) with topologies \(\tau = \{\emptyset, \{d\}, \{b, c\}, \{b, c, d\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, \{b, c\}, \{b, c, d\}, Y\} \). Let \(f: X \to Y \) be the identity map. Then \(f \) is \(g^* \)-homeomorphism. But it is not regular homeomorphism. Since the inverse image of the closed set \(\{a\} \) in \(X \) is \(\{a\} \) is not closed in \(Y \).

Theorem 5.7 Every \(g^* \)-homeomorphism is \(gpr \)-homeomorphism, but not conversely.

Proof: Let \(f: (X, \tau) \to (Y, \sigma) \) be a \(g^* \)-homeomorphism. Then \(f \) and \(f^{-1} \) are \(g^* \)-continuous and \(f \) is bijection. Since every \(g^* \)-continuous function is \(gpr \)-continuous, \(f \) and \(f^{-1} \) are \(gpr \)-continuous. Hence \(f \) is \(gpr \)-homeomorphism.

Example 5.8 Consider \(X = Y = \{a, b, c, d\} \) with topology \(\tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\} \) and \(\sigma = \{\emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, Y\} \). Let \(f: X \to Y \) be a map defined by \(f(a) = b, f(b) = c, f(c) = d \) and \(f(d) = a \). Then \(f \) is \(gpr \)-homeomorphism. But it is not \(g^* \)-homeomorphism. Since the inverse image of the closed set \(\{d\} \) in \(X \) is \(\{c\} \) is not \(g^* \)-closed in \(Y \).

Theorem 5.9 Every \(g^* \)-homeomorphism is \(rg \)-homeomorphism but not conversely.

Proof: The proof follows from the definition and fact that every \(g^* \)-closed set is \(rg \)-closed.

Example 5.10 Consider \(X = Y = \{a, b, c, d\} \) with topology \(\tau = \{\emptyset, \{a, c\}, \{b, d\}, X\} \) and \(\sigma = \{\emptyset, \{d\}, \{a, b, c\}, Y\} \). Let \(f: X \to Y \) be the identity map. Then \(f \) is \(rg \)-homeomorphism. But it is not \(g^* \)-homeomorphism. Since the inverse image of the closed set \(\{a, c\} \) in \(X \) is \(\{a, c\} \) is not \(g^* \)-closed in \(Y \).

Theorem 5.11 Every \(g^* \)-homeomorphism is \(g \)-homeomorphism but not conversely.

Proof: The proof follows from the definition and fact that every \(g^* \)-closed set is \(g \)-closed.

Example 5.12 Consider \(X = Y = \{a, b, c, d\} \) with topology \(\tau = \{\emptyset, \{a, c\}, \{b, d\}, X\} \) and \(\sigma = \{\emptyset, \{d\}, \{a, b, c\}, Y\} \). Let \(f: X \to Y \) be the identity map. Then \(f \) is \(g \)-homeomorphism. But it is not \(g^* \)-homeomorphism. Since the inverse image of the closed set \(\{b, d\} \) in \(x \) is \(\{b, d\} \) is not \(g^* \)-closed in \(Y \).

Remark 5.13 The composition of two \(g^* \)-homeomorphism need not be a \(g^* \)-homeomorphism in general as seen from the following example.

Example 5.14 Let \(X = Y = Z = \{a, b, c\} \) with topologies \(\tau = \{\emptyset, \{b\}, X\}, \sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}, Y\} \) and \(\eta = \{\emptyset, \{a, b\}, Z\} \). Let \(g: (X, \tau) \to (Y, \sigma) \) be a map defined by \(g(a) = a, g(b) = c \) and \(g(c) = b \). \(f: (Z, \eta) \to (X, \tau) \) be the identity map. Both \(f \) and \(g \) are
gr*-homeomorphism. Define $g \circ f: (Z, \eta) \to (Y, \sigma)$. Hence $\{a\}$ is closed set of (Y, σ). Therefore $(g \circ f)^{-1}\{a\} = \{a\}$ is not gr*-closed set of (Z, η). Therefore $g \circ f$ is not gr*-homeomorphism.

Remarks 5.15 For the functions defined above, we have the following implications.

Theorem 5.16
Let $f: (X, \tau) \to (Y, \sigma)$ be a bijective gr*-continuous map. Then the following are equivalent.

(a) f is an gr*-open map.
(b) f is an gr*-homeomorphism.
(c) f is an gr*-closed map.

Proof: Let $(X, \tau) \to (Y, \sigma)$ be a bijective gr*-continuous map.
(a)\to(b). Let F be a closed set in (X, τ). Then X/F is open in (X, τ). Since f is gr*-open, then $f(X/F)$ is gr*-open in (Y, σ). That is, $f(F)$ is gr*-closed in (Y, σ). Thus f is gr*-continuous. Further $(f^{-1})^{-1}(F) = f(F)$ is gr*-closed in (Y, σ). Thus f^{-1} is gr*-continuous.
(b)\to(c): Suppose f is an gr*-homeomorphism. Then f is bijective, f and f^{-1} are gr*-continuous. Let S be a gr*-closed set in (X, τ). Since f^{-1} is gr*-continuous. Then $(f^{-1})^{-1}(S) = f(S)$ is gr*-closed in (Y, σ). Thus f is gr*-closed.
(c)\to(a): Let F be an gr*-closed map. Let V be gr*-open in X. Then X/V is gr*-closed in (Y, σ). Since f is gr*-closed, $f(X/V)$ is gr*-closed in (Y, σ). This implies $Y/f(V)$ is gr*-closed in (Y, σ). Therefore $f(V)$ is gr*-open in (Y, σ).

Definition 5.17
A bijection $f: (X, \tau) \to (Y, \sigma)$ is said to be gr**-homeomorphism if both f and f^{-1} are gr* irresolute. We say that spaces (X, τ) and (Y, σ) are gr**-homeomorphism if there exists an gr**-homeomorphism from (X, τ) onto (Y, σ). We denote the family of all gr**-homeomorphism of a topological space (X, τ) onto itself by gr**-h(X, τ).

Theorem 5.18
Every gr**-homeomorphism is gr*-homeomorphism but not conversely.

Proof: Follows from the definition

Example 5.19
Let $X = Y = \{a, b, c\}$, $\tau = \{\Phi, \{b\}, \{c\}, \{b, c\}, X\}$ and $\sigma = \{\Phi, \{b\} Y\}$. Define an identity map $f: (X, \tau) \to (Y, \sigma)$. Then f is gr*-homeomorphism but not gr**-homeomorphism.

Theorem 5.20
Let $f: (X, \tau) \to (Y, \sigma)$, and $g: (Y, \sigma) \to (Z, \eta)$ be gr**-homeomorphisms. Then their composition $g \circ f: (X, \tau) \to (Y, \sigma)$ is also gr**-homeomorphism.
Proof: Suppose \(f \) and \(g \) are \(g^{**}\)-homeomorphisms. Then \(f \) and \(g \) are \(g^*\)-irresolute. Let \(U \) be \(g^*\)-closed set in \((Z, \eta)\). Since \(g \) is \(g^*\)-irresolute, \(g^{-1}(U) \) is \(g^*\)-closed in \((Y, \sigma)\). This implies that \(f^{-1}(g^{-1}(U)) = (g\circ f)^{-1}(U) \) is \(g^*\)-closed in \((X, \tau)\). Since \(f \) is \(g^*\)-irresolute. Hence \((g\circ f)\) is \(g^*\)-irresolute. Also for an \(g^*\)-closed set \(V \) in \((X, \tau)\). We have \(g(f(V)) = g(f(V)) \). By hypothesis, \(f(V) \) is \(g^*\)-closed set in \((Z, \eta)\), this implies that \(g(f(V)) \) is \(g^*\)-closed set in \((Z, \eta)\). \(g\circ f \) is a bijection. This proves \(g\circ f \) is \(g^{**}\)-homeomorphism.

Theorem 5.21 The set \(g^{**}(X, \tau) \) from \((X, \tau)\) onto itself is a group under composition of functions.

Proof: Let \(f \) and \(g \in g^{**}(X, \tau) \). Then by the theorem 5.20, \(g\circ f \in g^{**}(X, \tau) \). We know that the composition of functions is associative and the identity element. \(I: (X, \tau)\rightarrow (X, \tau) \) belonging to \(g^{**}(X, \tau) \) serves as the identity element. If \(f \in g^*(X, \tau) \), then \(f^{-1} \in g^*(X, \tau) \). This proves \(g^{**}(X, \tau) \) is a group under the operation of composition of functions.

REFERENCES

