ON THE HYPER-WIENER INDEX OF THORNY-COMPLETE GRAPH

Shigehalli V. S. 1 and Shanmukh Kuchabal 2

1 Professor, Department of Mathematics, Rani Channamma University,
Vidya Sangama, Belagavi-591156, India.

2 Research Scholar, Department of Mathematics, Rani Channamma University,
Vidya Sangama, Belagavi-591156, India.

Email: shanmukhkuchabal@gmail.com, shigehallivs@yahoo.co.in

Abstract: Let G be the graph. The Wiener Index W(G) is the sum of all distances between vertices of G, where as the Hyper-Wiener index WW(G) is defined as $\text{WW}(G) = \text{W}(G) + \frac{1}{2} \sum_{(u,v) \in V(G)} d^2(u,v)$. In this paper we prove some general results on Hyper-Wiener Index of Thorny-Complete graphs.

Mathematics Subject Classification: 05C12.

Keywords: Thorny-complete graph, Wiener index and hyper-Wiener index.

1. INTRODUCTION:

In this paper we consider graphs means simple connected graphs, connected graphs without loops and multiple edges. In mathematical terms a graph is represented as $G = (V,E)$ where V is the set of vertices and E is the set of edges. The distance between the vertices u and v of $V(G)$ is denoted by $d(u,v)$ and it is defined as the number of edges in a minimal path connecting the vertices u and v.

In chemical graph theory, the Wiener index (also called Wiener number) is a topological index of a molecule, defined as the sum of the lengths of the shortest paths between all pairs of vertices in the chemical graph represented the non-hydrogen atom in the molecule. The Wiener index is named after Harry Wiener, who introduced it in 1947; at the time, Wiener called it the “Path Number”. It is the oldest topological index related to molecular branching.

Wiener Index given by

$$ W(G) = \sum_{u \in V} d(u,v) $$

The Hyper-Wiener index “WW” is distance based graph invariants, used as a structure descriptor for predicting physico-chemical properties of organic compounds. The hyper-Wiener index of acyclic graphs was introduced by Milan Randic in 1993. Then Klein, generalized Randic’s definition for all connected graphs, as a generalization of the Wiener index. It is defined as

$$ \text{WW}(G) = \text{W}(G) + \frac{1}{2} \sum_{(u,v) \in V(G)} d^2(u,v) $$

The Hyper-Wiener index of Complete graph K_n, Path graph P_n, Star graph $K_{1,n-1}$ and Cycle graph C_n is given by the expressions

$$ \text{WW}(K_n) = \frac{n(n-1)}{2}, \quad \text{WW}(P_n) = \frac{n^4+2n^3-n^2-2n}{24}, \quad \text{WW}(K_{1,n-1}) = \frac{1}{2} (n-1)(3n-4) $$

$$ \text{WW}(C_n) = \begin{cases}
\frac{n^2(n+1)(n+2)}{48}, & \text{n is even}
\end{cases} $$
We have three methods for calculation of the Hyper-Wiener Index of molecular graphs.

(i) **Distance Formula:**

\[WW(G) = W(G) + \frac{1}{2} \sum_{(u,v) \in V(G)} d^2(u,v) \]

(ii) **Cut Method:**

(iii) **The Method of Hosaya Polynomials:**

Let \(G \) a connected \(n \)-vertex graph with vertex set \(V(G) = \{v_1, v_2, \ldots, v_n\} \) and \(p = (p_1, p_2, \ldots, p_n) \) be an \(n \)-tuple of non-negative integers. The **thorn graph** \(G_p \) is the graph obtained by attaching \(p_i \) pendent vertices to the vertex \(v_i \) of \(G \) for \(i = 1, 2, \ldots, n \). The \(p_i \) pendent vertices attached to the vertex \(v_i \) will be called the thorns of \(v_i \). The concept of thorny graphs was introduced by Ivan Gutman.

Following results are proved using distance formula

2. MAIN RESULTS:

Theorem 2.1: Let \(K_n \) be the compete graph on \(n \) vertices. The graph \(G \) obtained by attaching \(S \)-number of Pendent vertices to each vertex of \(K_n \) with common vertex then its Hyper-Wiener index given by

\[WW(G) = \frac{1}{2} \left\{ n^2 - n - 25n + 6Pn - 5P - 3PS + 6P^2 \right\} \]

Where

- \(n \) -cardinality of complete graph
- \(S \) - Number of Pendent vertices attached to each vertex of \(n \).
- \(P \) – Total number of Pendent vertices present in \(G \).

Proof: To find Hyper-Wiener index of the graph we need to find following two parts,

To find \(W(G) \):

\[
W(G) = \frac{1}{2} \sum_{(u,v) \in V(G)} d(u,v) \\
= \frac{1}{2} [(1 + 1 + \cdots + 1 + 2 + 2 + \cdots + 2) + \cdots + (1 + 1 + \cdots + 1 + 2 + 2 + \cdots + 2)] \\
\quad \times \left(\begin{array}{c} \text{n + S - 1 times} \\ \text{P-S times} \\
\text{n + S - 1 times} \\
\text{P-S times} \\
\text{n + S - 2 times} \\
\text{P-S times} \\
\text{n + S - 1 times} \\
\text{P-S times} \\
\end{array} \right)
\]

\[
= \frac{1}{2} [(n + S - 1 + 2(P - S) + \cdots + n + S - 1 + 2(P - S)]
\]

\[
\times \left(\begin{array}{c} n \text{ times} \\
\text{P times} \\
\end{array} \right) \\
+ [1 + 2(n + S - 2) + 3(P - S) + \cdots + 1 + 2(n + S - 2) + 3(P - S)]
\]

\[
\times \left(\begin{array}{c} \text{n times} \\
\text{P times} \\
\end{array} \right)
\]
\[W(G) = \frac{1}{2} [n^2 - 5n - n + 4Pn - 3P - PS + 3P^2] \]
\[\text{...(a)} \]

To find \(W^*(G) \):
\[
W^*(G) = \frac{1}{2} \sum_{(u,v) \in V(G)} d^2(u,v)
\]
\[
W^*(G) = \frac{1}{2} \left[((1 + 1 + \cdots + 1) + (1 + 1 + \cdots + 1) + \cdots + (1 + 1 + \cdots + 1)) \right]
\]
\[
\text{P-S times P-S times P-S times}
\]
\[
+ (1 + 1 + \cdots + 1 + 3 + 3 + \cdots + 3) + \cdots + (1 + 1 + \cdots + 1 + 3 + 3 + \cdots + 3)
\]
\[
\text{n + S - 2 times P-S times n + S - 2 times P-S times}
\]
\[
= \frac{1}{2} \left[((P - S) + (P - S) + \cdots + (P - S)) \right]
\]
\[
\text{n times}
\]
\[
+ ((n + S - 2) + 3(P - S) + \cdots + (n + S - 2) + 3(P - S)) \right]
\]
\[
\text{P times}
\]
\[
W^*(G) = \frac{1}{2} \left[n(P - S) + P((n + S - 2) + 3(P - S)) \right]
\]
\[
W^*(G) = \frac{1}{2} \left[2Pn - Sn - 2PS - 2P + 3P^2 \right] \]
\[\text{...(b)} \]

Since \(W(G) = W(G) + W^*(G) \)

Therefore \(W(G) = \frac{1}{2} [n^2 - 5n - n + 4Pn - 3P - PS + 3P^2] \)
\[
+ \frac{1}{2} \left[2Pn - Sn - 2PS - 2P + 3P^2 \right]
\]

Combining (a) and (b) gives
\[
W(G) = \frac{1}{2} \left[n^2 - n - 2Sn + 6Pn - 5P - 3PS + 6P^2 \right]
\]

Corollary 2.1.1: Let \(K_n \) be the compete graph on \(n \) vertices. The graph \(G \) obtained by attaching three Pendent vertices to each vertex of \(K_n \) with common vertex then its Hyper-Wiener index given by
\[
W(G) = \frac{1}{2} \left[n^2 - 7n + 6Pn - 14P + 6P^2 \right]
\]

Proof: Substituting \(S=3 \) in above theorem, gives the result.

Corollary 2.1.2: Let \(K_n \) be the compete graph on \(n \) vertices. The graph \(G \) obtained by attaching two Pendent vertices to each vertex of \(K_n \) with common vertex then its Hyper-Wiener index given by
WW(G) = \frac{1}{2}\{n^2 - 5n + 6Pn - 11P + 6P^2\}

Proof: Substituting S=2 in above theorem, gives the result.

Corollary 2.1.3: Let K_n be the compete graph on n vertices. The graph G obtained by attaching one Pendent vertex to each vertex of K_n with common vertex then its Hyper-Wiener index given by

$$WW(G) = \frac{1}{2}\{n^2 - 3n + 6Pn - 8P + 6P^2\}$$

Proof: Substituting S=1 in above theorem, gives the result.

Corollary 2.1.4: Hyper-Wiener index of complete graph given by

$$WW(G) = \frac{1}{2}\{n^2 - n\}$$

Proof: Substituting S=0 and P=0 in above theorem, gives the result.

Illustrations:

\[\text{Theorem 2.2:} \quad \text{Let } K_n \text{ be the compete graph on } n \text{ vertices (n is even). The graph G obtained by attaching S- number of Pendent vertices to alternative vertices of } K_n \text{ with common vertex then its Hyper-Wiener index given by} \]

$$WW(G) = \frac{1}{2}\{2n^2 + 12Pn - 25n - 2n - 10P - 6PS + 12P^2\}$$

Where

- n - cardinality of complete graph and n is even
- S - Number of Pendent vertices attached to alternative vertices of n.
- P - Total number of Pendent vertices present in G.

Proof: To find Hyper-Wiener index of the graph we need to find following two parts,

To find $W(G)$:

$$W(G) = \frac{1}{2}\sum_{(u,v)\in V(G)} d(u, v)$$

\[= \frac{1}{2}\left[\left((1 + 1 + \cdots + 1) + (2 + 2 + \cdots + 2) + \cdots + (1 + 1 + \cdots + 1) + (2 + 2 + \cdots + 2) \right) \right]
\]

\[n - 1 \text{ times} \quad P \text{ times} \quad n - 1 \text{ times} \quad P \text{ times} \]

\[+ \left[(1 + 1 + \cdots + 1 + 2 + 2 + \cdots + 2) + \cdots + (1 + 1 + \cdots + 1 + 2 + 2 + \cdots + 2) \right] \]

\[n + S - 1 \text{ times} \quad P-S \text{ times} \quad n + S - 1 \text{ times} \quad P-S \text{ times} \]
\[W(G) = \frac{1}{2} \left[\left(n - 1 + 2P \right) + \frac{n}{2} \left[n - 1 + S + 2P - 2S \right] + P \left[1 + 2(n + S - 2) + 3(P - s) \right] \right] \]

\[W(G) = \frac{1}{4} \left[2n^2 + 8pn - 5n - 2n - 6P - 2PS + 6P^2 \right] \] \hspace{1cm} \text{(a)}

To find \(WW^*(G) \):

\[WW^*(G) = \frac{1}{2} \sum_{(u,v) \in V(G)} d^2(u, v) \]

\[WW^*(G) = \frac{1}{2} \left[\left(1 + 1 + \cdots + 1 \right) + \left(1 + 1 + \cdots + 1 \right) + \cdots + \left(1 + 1 + \cdots + 1 \right) \right] \]

\[WW^*(G) = \frac{1}{4} \left[4Pn - Sn - 4SP + 6P^2 - 4P \right] \] \hspace{1cm} \text{(b)}

Since \(WW(G) = W(G) + WW^*(G) \)

Therefore
WW(G) = \frac{1}{4} \left(\frac{1}{4} \right) \left[2n^2 + 8Pn - 5n - 2n - 6P - 2PS + 6P^2 \right] + \frac{1}{4} \{ 4Pn - 5n - 4SP + 6P^2 - 4P \} \\

WW(G) = \frac{1}{4} \{ 2n^2 + 12Pn - 25n - 2n - 10P - 6PS + 12P^2 \}

Corollary 2.2.1: Let K_n be the complete graph on n vertices (n is even). The graph G obtained by attaching three pendant vertices to alternative vertices of $K_n (n \geq 4)$ with common vertex then its Hyper-Wiener index given by

WW(G) = \frac{1}{4} \{ 2n^2 + 12Pn - 8n - 28P + 12P^2 \}

Proof: Substituting $S=3$ in above theorem, gives the result.

Corollary 2.2.2: Let K_n be the compete graph on n vertices (n is even). The graph G obtained by attaching two pendant vertices to alternative vertices of $K_n (n \geq 4)$ with common vertex then its Hyper-Wiener index given by

WW(G) = \frac{1}{4} \{ 2n^2 + 12Pn - 6n - 22P + 12P^2 \}

Proof: Substituting $S=2$ in above theorem, gives the result.

Corollary 2.2.3: Let K_n be the compete graph on n vertices (n is even). The graph G obtained by attaching one pendant vertex to alternative vertices of $K_n (n \geq 4)$ with common vertex then its Hyper-Wiener index given by

WW(G) = \frac{1}{4} \{ 2n^2 + 12Pn - 4n - 16P + 12P^2 \}

Proof: Substituting $S=1$ in above theorem, gives the result.

Illustrations:

\[|K_4| = 4, S = 2, P = 4, W(G) = 50 \quad WW(G) = 76 \]

\[|K_6| = 6, S = 1, P = 3, W(G) = 57 \quad WW(G) = 81 \]
REFERENCES: