\(\hat{g}^s\)-continuous maps in topological spaces

Dr. S. Poius Missier, Associate Professor, PG and Research Department of Mathematics, V.O. Chidambaram College of Arts and Science, Thoothukudi 628008, India.
E-mail: spmissier@gmail.com

M. Anto, Associate Professor, Department of Mathematics, Annai Velankanni College, Tholavattam 629157, India.
E-mail: manto1963@yahoo.com

Abstract: In this paper, we introduce the concepts of \(\hat{g}^s\)-continuity and \(\hat{g}^s\)-irresoluteness mappings and their characterizations.

Key words: \(\hat{g}^s\)-continuity, \(\hat{g}^s\)-irresoluteness, \(\hat{g}^s\)-open map, \(\hat{g}^s\)-closed map

2010 AMS Classification: 54C08

1 Introduction

The concept of generalised closed set of a topological space was introduced by N. Levine in 1970 [6]. These sets were also considered by W. Dunham and N. Levine in 1980 [3] and by W. Dunham in 1982 [4]. Since then new concepts have been introduced, studied, investigated and developed in the field of generalised closed sets by various authors. In 1991, K. Balachandran, H. Maki and P. Sundaram [1] defined a new class of mappings called generalised continuous mappings which contains the class of continuous mappings. S. Poius Missier and M. Anto studied and investigated the topological properties of \(\hat{g}^s\)-closed sets [8] by generalising the semi closed sets using \(g\)-open sets. Based on \(\hat{g}^s\)-closed sets, we continue the study of the associated functions, namely, \(\hat{g}^s\)-irresolute and \(\hat{g}^s\)-continuous functions.

2 Preliminaries

Definition 2.1 [7] A subset \(A\) of a topological space \((X, \tau)\) is called semi open if \(A \subseteq cl (int (A))\).

A subset \(A\) of a topological space \((X, \tau)\) is called semi closed if \(A^c\) is semi open where \(A^c\) is the complement of \(A\).
Definition 2.2 [10] A subset A of a topological space (X, τ) is called a \tilde{g}-closed set if $\text{cl} (A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Definition 2.3 [9] A subset A of a topological space (X, τ) is called a \tilde{g}^s-closed set if $\text{cl} (A) \subseteq U$ whenever $A \subseteq U$ and U is \tilde{g}-open.

Note that M.K.R.S. Veerakumar called it ’g-closed in his 2006 paper[9].

Definition 2.4 A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is continuous if $f^{-1} (U)$ is closed in X for each closed set U in Y.

Definition 2.5 [1] A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is g-continuous if $f^{-1} (U)$ is g-closed in X for each closed set U in Y.

Definition 2.6 [5] A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is irresolute if $f^{-1} (U)$ is semi closed in X for each semi closed set U in Y.

Definition 2.7 [10] A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is \tilde{g}-irresolute if $f^{-1} (U)$ is \tilde{g}-closed in X for each \tilde{g}-closed set U in Y.

Definition 2.8 [5] A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is pre semi closed if $f (V)$ is semi closed in Y for each semi closed set V in X.

Definition 2.9 [2] A topological space (X, τ) is called a T_0 space if every gs-closed set is closed.

Definition 2.10 [2] A topological space (X, τ) is called a T_0 space if every gs-closed set is g-closed.

Definition 2.11 [6] A topological space (X, τ) is called a $T_{1/2}$ space if every g-closed set is closed in X.

Lemma 2.12 If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is irresolute,

then for every subset B of Y, $\text{cl} \left(f^{-1} (B) \right) \subseteq f^{-1} \left(\text{cl} (B) \right)$.
Proof. Let \(x \in sdl\left(f^{-1}(B)\right) \).

Suppose that \(V \) is any semi open set of \(Y \) containing \(f(x) \).

i.e., \(f(x) \in V \).

Then \(x \in f^{-1}(V) \).

Since \(f \) is irresolute, \(f^{-1}(V) \) is semi open set of \(X \) and \(f^{-1}(V) \cap f^{-1}(B) \neq \phi \).

\[\Rightarrow f^{-1}(V \cap B) \neq \phi. \]

\[\Rightarrow (V \cap B) \neq \phi \]

\[\Rightarrow f(x) \in scl(B). \]

\[\Rightarrow x \in f^{-1}(f(x)) \subseteq f^{-1}(sdl(B)) \]

\[\Rightarrow sdl\left(f^{-1}(B)\right) \subseteq f^{-1}(scl(B)). \]

\(\blacksquare \)

Notations used:

(i) \(\hat{g}^sC(X, \tau) \) denotes the class of all \(\hat{g}^s \)-closed sets in \((X, \tau) \).

(ii) \(\hat{g}^sO(X, \tau) \) denotes the class of all \(\hat{g}^s \)-open sets in \((X, \tau) \).

(iii) \(scl(A) \) denotes semi closure of \(A \)

(iv) \(scl(A) \) denotes semi interior of \(A \)

3 \(\hat{g}^s \)-continuous functions

Definition 3.1 \[8\] A subset \(A \) of a topological space \((X, \tau) \) is called a \(\hat{g}^s \)-closed set if \(scl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\hat{g} \)-open.

Definition 3.2 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\hat{g}^s \)-continuous if \(f^{-1}(U) \) is \(\hat{g}^s \)-closed for each closed set \(U \) in \(Y \).

Definition 3.3 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\hat{g}^s \)-irresolute if \(f^{-1}(U) \) is \(\hat{g}^s \)-closed for each \(\hat{g}^s \)-closed set \(U \) in \(Y \).

Example 3.4 Let \((X, \tau) \) and \((Y, \sigma) \) be two topological spaces where \(X = Y = \{a, b, c, d\} \) with \(\tau = \{\phi, X, \{a\}, \{a, b, c\}, \{a, d\}\} \) and \(\sigma = \{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}\} \).

Then \(\tau^c = \{\phi, X, \{b, c, d\}, \{d\}, \{b, c\}\} \) and \(\sigma^c = \{\phi, X, \{b, c, d\}, \{c, d\}, \{d\}\} \).

Also \(\hat{g}^sC(X, \tau) = \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, \{c, d\}, \{b, d\}, \{b, c\}, \{d\}, \{c\}, \{b\}\} \).
Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = b, f(b) = d, f(c) = a, f(d) = c \).

We have \(f^{-1}([b, c, d]) = \{a, b, d\}, f^{-1}([c, d]) = \{b, d\}, f^{-1}([d]) = \{b\} \).

Thus \(f^{-1}(U) \) is \(\hat{g}^*s \)-closed for each closed set \(U \) in \(Y \).

Therefore \(f \) is \(\hat{g}^*s \)-continuous.

Proposition 3.5 The following are equivalent for \(f : (X, \tau) \rightarrow (Y, \sigma) \).

(i) \(f \) is \(\hat{g}^*s \)-continuous.

(ii) \(f^{-1}(U) \) is \(\hat{g}^*s \)-open for each open set \(U \) in \(Y \).

Proof. (i) \(\Rightarrow \) (ii)

Suppose that \(f \) is \(\hat{g}^*s \)-continuous. Let \(U \) be open in \(Y \). Then \(U^c \) is closed in \(Y \). Since \(f \) is \(\hat{g}^*s \)-continuous, we have \(f^{-1}(U^c) \) is \(\hat{g}^*s \)-closed in \(X \). But \(f^{-1}(U^c) = [f^{-1}(U)]^c \). Therefore \(f^{-1}(U) \) is \(\hat{g}^*s \)-open in \(X \).

(ii) \(\Rightarrow \) (i)

Suppose that \(f^{-1}(U) \) is \(\hat{g}^*s \)-open for each open set \(U \) in \(Y \). Let \(V \) be closed in \(Y \). Then \(V^c \) is open in \(Y \). By assumption, \(f^{-1}(V^c) \) is \(\hat{g}^*s \)-open in \(X \). i.e., \(f^{-1}(V) \) is \(\hat{g}^*s \)-closed in \(X \). Thus \(f \) is \(\hat{g}^*s \)-continuous. \(\blacksquare \)

Proposition 3.6 Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function.

(i) \(f \) is \(\hat{g}^*s \)-continuous.

(ii) For each \(x \) in \(X \) and for each open set \(V \) containing \(f(x) \), there is a \(\hat{g}^*s \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \).

(iii) \(f(\hat{g}^*scl(A)) \subseteq cl(f(A)) \) for each subset \(A \) of \(X \).

(iv) \(\hat{g}^*scl(f^{-1}(B)) \subseteq f^{-1}(cl(f(B))) \) for each subset \(B \) of \(Y \).

Then (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (iii) \(\Rightarrow \) (iv)

Proof. (i) \(\Rightarrow \) (ii)

Let \(x \in X \) and \(V \) be an open set containing \(f(x) \). Then, by (i), \(f^{-1}(V) \) is a \(\hat{g}^*s \)-open set of \(X \) containing \(x \). If \(U = f^{-1}(V) \), then \(f(U) = f(f^{-1}(V)) \subseteq V \).

(ii) \(\Rightarrow \) (iii)

Let \(A \) be a subset of a space \(X \) and \(f(x) \notin cl(f(A)) \). Then there exists open set \(V \) of
\(Y\) containing \(f(x)\) such that \(V \cap f(A) = \phi\). Now, by \((ii)\), there is a \(\hat{g}^s\)-open set \(U\) containing \(x\) such that \(f(x) \in f(U) \subseteq V\). Hence \(f(U) \cap f(A) = \phi\) i.e., \(f(U \cap A) = \phi\) i.e., \(U \cap A = \phi\). Therefore \(x \notin \hat{g}^s \text{cl}(A)\). Therefore \(f(x) \notin f(\hat{g}^s \text{cl}(A))\). Therefore \(f(\hat{g}^s \text{cl}(A)) \subseteq \text{cl}(f(A))\).

\((iii) \Rightarrow (iv)\)

Let \(B\) be a subset of \(Y\) such that \(A = f^{-1}(B)\). By \((iii)\), \(f(\hat{g}^s \text{cl}(A)) \subseteq \text{cl}(f(A)) \subseteq \text{cl}(B)\). Therefore \(\hat{g}^s \text{cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))\).

Lemma 3.7 \[8\] A subset \(A\) of a topological space \((X, \tau)\) is \(\hat{g}^s\)-open iff \(F \subseteq \text{sint}(A)\) whenever \(F \subseteq A\) and \(F\) is \(\hat{g}\)-closed.

Proposition 3.8 Let \(B\) be a \(\hat{g}^s\)-open (or \(\hat{g}^s\)-closed) subset of \((Y, \sigma)\) satisfying \(\text{sint}(B) = \text{int}(B)\). Then \(f^{-1}(B)\) is \(\hat{g}^s\)-open (or \(\hat{g}^s\)-closed) in \((X, \tau)\) if \(f: (X, \tau) \longrightarrow (Y, \sigma)\) is \(\hat{g}^s\)-continuous and if image of a \(\hat{g}\)-closed set in \(X\) under \(f\) is \(\hat{g}\)-closed set in \(Y\).

Proof. Let \(B\) be a \(\hat{g}^s\)-open set in \(Y\). Let \(F \subseteq f^{-1}(B)\) where \(F\) is a \(\hat{g}\)-closed set in \(X\). Then \(f(F) \subseteq B\) holds. By our assumption, \(f(F)\) is \(\hat{g}\)-closed set in \(Y\) and \(B\) be a \(\hat{g}^s\)-open in \(Y\). Therefore, by Lemma 3.7, \(f(F) \subseteq \text{sint}(B)\) holds. Again, by our assumption, \(f(F) \subseteq \text{int}(B)\) and hence \(F \subseteq f^{-1}(\text{int}(B))\) holds. Since \(f\) is \(\hat{g}^s\)-continuous and \(\text{int}B\) is open in \(Y\), \(f^{-1}(\text{int}(B))\) is \(\hat{g}^s\)-open in \(X\). So, by Lemma 3.7, \(F \subseteq \text{sint}(f^{-1}(\text{int}(B)))\) holds i.e., \(F \subseteq \text{sint}(f^{-1}(\text{int}(B))) \subseteq \text{sint}(f^{-1}(B))\) holds. Therefore \(f^{-1}(B)\) is \(\hat{g}^s\)-open. By taking complements, we can show that if \(B\) is \(\hat{g}^s\)-closed in \(Y\), then \(f^{-1}(B)\) is \(\hat{g}^s\)-closed in \(X\).

Proposition 3.9 The following are equivalent for \(f: (X, \tau) \longrightarrow (Y, \sigma)\).

\((i)\) \(f\) is \(\hat{g}^s\)-irresolute.

\((ii)\) \(f^{-1}(U)\) is \(\hat{g}^s\)-open for each \(\hat{g}^s\)-open set \(U\) in \(Y\).

Proof. \((i) \Rightarrow (ii)\)

Suppose that \(f\) is \(\hat{g}^s\)-irresolute. Let \(U\) be \(\hat{g}^s\)-open in \(Y\). Then \(U^c\) is \(\hat{g}^s\)-closed in \(Y\). Since \(f\) is \(\hat{g}^s\)-irresolute, we have \(f^{-1}(U^c)\) is \(\hat{g}^s\)-closed in \(X\). But \(f^{-1}(U^c) = (f^{-1}(U))^c\). Therefore \(f^{-1}(U)\) is \(\hat{g}^s\)-open in \(X\).
(ii) ⇒ (i)

Suppose that $f^{-1}(U)$ is \hat{g}^*s-open for each \hat{g}^*s-open set U in Y. Let V be \hat{g}^*s-closed in Y. Then V^c is \hat{g}^*s-open in Y. Therefore $f^{-1}(V^c)$ is \hat{g}^*s-open in X. Therefore $f^{-1}(V)$ is \hat{g}^*s-closed in X. Therefore f is \hat{g}^*s-irresolute.

Proposition 3.10 If a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is \hat{g}^*s-irresolute, then f is \hat{g}^*s-continuous.

Proof. Let V be a closed set of Y. But every closed set is \hat{g}^*s-closed. Therefore V is a \hat{g}^*s-closed set of Y. Since f is \hat{g}^*s-irresolute, $f^{-1}(V)$ is \hat{g}^*s-closed in X. Therefore, by Definition 3.2, f is \hat{g}^*s-continuous.

Remark 3.11 The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.12 Let (X, τ) and (Y, σ) be topological spaces where $X = Y = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{a, b, c\}\}$ and $\sigma = \{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}\}$. Then $\tau^c = \{\phi, X, \{b, c, d\}, \{d\}\}$ and $\sigma^c = \{\phi, X, \{b, c, d\}, \{c, d\}, \{d\}\}$.

$\hat{g}^*sC(X, \tau) = \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, \{c, d\}, \{b, d\}, \{b, c\}, \{a, d\}, \{d\}, \{c\}, \{b\}\}.$

$\hat{g}^*sC(Y, \sigma) = \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, \{c, d\}, \{b, d\}, \{b, c\}, \{a, d\}, \{d\}, \{c\}, \{b\}\}.$

Define $f : X \rightarrow Y$ by $f(a) = a, f(b) = c, f(c) = d, f(d) = b$.

We have $f^{-1}(\{b, c, d\}) = \{a, b, c\}, f^{-1}(\{c, d\}) = \{a, c, d\}, f^{-1}(\{d\}) = \{c\}$. Thus $f^{-1}(U)$ is \hat{g}^*s-closed for each closed set U in Y.

Therefore $f : (X, \tau) \rightarrow (Y, \sigma)$ is \hat{g}^*s-continuous.

But, $f^{-1}(\{a, c, d\}) = \{a, b, c\}$ is not \hat{g}^*s-closed in X, whereas $\{a, c, d\}$ is \hat{g}^*s-closed in Y.

Therefore $f : (X, \tau) \rightarrow (Y, \sigma)$ is not \hat{g}^*s-irresolute.

Proposition 3.13 Let Y be a T_b space. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is \hat{g}^*s-irresolute if it is \hat{g}^*s-continuous.

Proof. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be \hat{g}^*s-continuous. Let A be a \hat{g}^*s-closed set in Y. But
every g^s-closed set is gs-closed. Therefore A is gs-closed in Y. Since Y is a T_b space, A is closed. Since f is g^s-continuous, $f^{-1}(A)$ is g^s-closed in X. Hence f is g^s-irresolute.

Proposition 3.14 Let Y be a T_d-space and $T_{1/2}$-space. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is g^s-irresolute if it is g^s-continuous.

Proof. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be g^s-continuous. Let A be a g^s-closed set in Y. But every g^s-closed set is gs-closed. Therefore A is gs-closed in Y. Since Y is a T_d-space, A is g-closed in Y. Since Y is a $T_{1/2}$-space, A is closed in Y. Since f is g^s-continuous, $f^{-1}(A)$ is g^s-closed in X. Therefore f is g^s-irresolute in X.

Proposition 3.15 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \mu)$ be two functions. Let Y be a $T_{1/2}$-space, g a g-continuous function and f a g^s-continuous function. Then $g \circ f$ is g^s-continuous.

Proof. Let U be closed in Z. Since g is g-continuous, $g^{-1}(U)$ is g-closed in Y. But Y is $T_{1/2}$. Therefore $g^{-1}(U)$ is closed in Y. Since f is g^s-continuous, $f^{-1}(g^{-1}(U))$ is g^s-closed. Therefore $g \circ f$ is g^s-continuous.

Proposition 3.16 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be g^s-irresolute and X is T_b. Then f is continuous.

Proof. Let V be a closed subset of Y. Then V is semi closed and hence g^s-semi-irresolute in Y. Since f is g^s-irresolute, $f^{-1}(V)$ is g^s-closed in X. But every g^s-closed is gs-closed. Therefore $f^{-1}(V)$ is gs-closed in X. But X is T_b. Therefore $f^{-1}(V)$ is closed in X. Therefore f is continuous.

Proposition 3.17 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be g^s-irresolute and X is T_b. Then f is irresolute.
Proof. Let V be a semi closed subset of Y. Then V is \hat{g}^s-closed in Y. Since f is \hat{g}^s-irresolute, $f^{-1}(V)$ is \hat{g}^s-closed in X. But every \hat{g}^s-closed is g-closed. Therefore $f^{-1}(V)$ is g-closed in X. But X is T_h. Therefore $f^{-1}(V)$ is closed in X. Then $f^{-1}(V)$ is semi closed in X and hence f is irresolute.

Lemma 3.18 If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is surjective and if image of a \hat{g}-closed set is \hat{g}-closed under f, then for every subset S of Y and each \hat{g}-open set U of X containing $f^{-1}(S)$, there exists \hat{g}-open set V of Y such that $S \subseteq V$ and $(f^{-1}(V)) \subseteq U$.

Proof. Let $S \subseteq Y$ and U be a \hat{g}-open set in X, containing $f^{-1}(S)$.

Put $V = Y - f(X - U)$.

Then V is \hat{g}-open in Y containing S.

$\Rightarrow f^{-1}(V) = f^{-1}(Y - f(X - U))$.

$\Rightarrow f^{-1}(V) = X - f^{-1}((f(X - U)))$.

$\Rightarrow f^{-1}(V) \subseteq X - (X - U)$.

$\Rightarrow f^{-1}(V) \subseteq U$.

Proposition 3.19 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be surjective and if image of a \hat{g}-closed set is \hat{g}-closed under f. Then for every \hat{g}^s-closed set B in Y, $f^{-1}(B)$ is \hat{g}^s-closed in X.

Proof. Let B be a \hat{g}^s-closed set in Y. Suppose that $f^{-1}(B) \subseteq U$ where U is \hat{g}-open set of X. By assumption and by Lemma 3.18, there is \hat{g}-open set V in Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$. Since B is \hat{g}^s-closed in Y and $B \subseteq V$, we have $scl(B) \subseteq V$. Hence $f^{-1}(scl(B)) \subseteq f^{-1}(V) \subseteq U$. By Lemma 2.12, $sd(f^{-1}(B)) \subseteq U$. Therefore $f^{-1}(B)$ is \hat{g}^s-closed in X.

Proposition 3.20 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function such that f is pre semi closed and \hat{g}-irresolute. Then for every \hat{g}^s-closed set A in X, $f(A)$ is \hat{g}^s-closed set in Y.

Proof. Let A be a \hat{g}^s-closed set in X. Suppose that $f(A) \subseteq U$ where U is \hat{g}-open set in Y. Then $A \subseteq f^{-1}(U)$ and $f^{-1}(U)$ is \hat{g}-open set in X. Since A is \hat{g}^s-closed in X, $scl(A) \subseteq f^{-1}(U)$ and hence $f(scl(A)) \subseteq U$. But $sd(f(A)) \subseteq scl(f(scl(A)))$. Since f
is pre semi closed, \(scl (f(A)) \subseteq f(scl(A)) \). Therefore \(scl (f(A)) \subseteq U \). Hence \(f(A) \) is \(\hat{g}^s \)-closed set in \(Y \).

Proposition 3.21 If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\hat{g}^s \)-irresolute, then for every subset \(A \) of \(X \), \(f(\hat{g}^s sd (A)) \subseteq scl (f(A)) \).

Proof. Let \(A \subseteq X \). We know that every semi closed set is \(\hat{g}^s \)-closed. Therefore, we have \(scl (f(A)) = \hat{g}^s \)-closed in \(Y \). Since \(f \) is \(\hat{g}^s \)-irresolute, \(f^{-1}(scl (f(A))) \) is \(\hat{g}^s \)-closed in \(X \). Also \(A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(scl (f(A))) \). Since \(f^{-1}(scl (f(A))) \) is \(\hat{g}^s \)-closed, \(\hat{g}^s sd (A) \subseteq f^{-1}(scl (f(A))) \). Therefore \(f(\hat{g}^s scl(A)) \subseteq f\{f^{-1}(scl (f(A)))\} \subseteq scl (f(A)) \). ■

Proposition 3.22 If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is bijective, \(\hat{g}^s \)-continuous, \(scl(A) = cl (A) \) for all subsets \(A \) in \(Y \) and if image of a \(\hat{g} \)-open set is \(\hat{g} \)-open under \(f \), then \(f \) is \(\hat{g}^s \)-irresolute.

Proof. Let \(V \) be a \(\hat{g}^s \)-closed set of \(Y \). Let \(f^{-1}(V) \subseteq U \) where \(U \) is \(\hat{g} \)-open in \(X \). Then \(f(f^{-1}(V)) \subseteq f(U) \). Since \(f \) is surjective, \(V \subseteq f(U) \). Since \(f(U) \) is \(\hat{g} \)-open and since \(V \) is \(\hat{g}^s \)-closed in \(Y \), we have \(scl(V) \subseteq f(U) \). By our assumption, \(d(V) \subseteq f(U) \). Since \(f \) is injective, \(f^{-1}(d(V)) \subseteq U \). Since \(f \) is \(\hat{g}^s \)-continuous and since \(d(V) \) is closed in \(Y \), \(f^{-1}(d(V)) \) is \(\hat{g}^s \)-closed in \(X \). Therefore \(scl(f^{-1}(d(V))) \subseteq U \). Since \(V \subseteq d(V) \), we have \(scl(f^{-1}(V)) \subseteq U \). Therefore \(f^{-1}(V) \) is \(\hat{g}^s \)-closed in \(X \) and hence \(f \) is \(\hat{g}^s \)-irresolute. ■

Definition 3.23 A map \(f : X \rightarrow Y \) is called a \(\hat{g}^s \)-closed map if \(f(U) \) is \(\hat{g}^s \)-closed in \((Y, \sigma) \) for every closed set \(U \) of \((X, \tau) \).

Definition 3.24 A map \(f : X \rightarrow Y \) is called a \(\hat{g}^s \)-open map if \(f(U) \) is \(\hat{g}^s \)-open in \((Y, \sigma) \) for every open set \(U \) of \((X, \tau) \).

Proposition 3.25 If \(f : X \rightarrow Y \) is \(\hat{g} \)-irresolute and \(\hat{g}^s \)-closed and \(A \) is a \(\hat{g}^s \)-closed subset of \(X \), then \(f(A) \) is \(\hat{g}^s \)-closed in \(Y \).

Proof. Let \(f(A) \subseteq U \) and \(U \) is \(\hat{g} \)-open in \(Y \). Then \(f^{-1}(f(A)) \subseteq f^{-1}(U) \). i.e., \(A \subseteq f^{-1}(U) \). Since \(f \) is \(\hat{g} \)-irresolute, \(f^{-1}(U) \) is \(\hat{g} \)-open in \(X \). Since \(A \) is \(\hat{g}^s \)-closed, \(cl(A) \subseteq f^{-1}(U) \). So,
\(f(\text{cl}(A)) \subseteq f(\text{cl}(U)). \) i.e., \(f(\text{cl}(A)) \subseteq U. \) Since \(f \) is \(\hat{g}^s \)-closed and \(\text{cl}(A) \) is closed in \(X, f(\text{cl}(A)) \) is \(\hat{g}^s \)-closed in \(Y. \) Therefore \(\text{scl}(f(\text{cl}(A))) \subseteq U. \) Since \(f(A) \subseteq f(\text{cl}(A)), \) we have \(\text{scl}(f(A)) \subseteq \text{scl}(f(\text{cl}(A))) \subseteq U. \) Therefore \(f(A) \) is \(\hat{g}^s \)-closed in \(Y. \)

Proposition 3.26 If \(f : X \rightarrow Y \) is \(\hat{g}^s \)-closed and \(g : Y \rightarrow Z \) is \(\hat{g} \)-irresolute and \(\hat{g}^s \)-closed, then \(g \circ f : X \rightarrow Z \) is \(\hat{g}^s \)-closed.

Proof. Let \(F \) be a closed set of \(X. \) Since \(f \) is \(\hat{g}^s \)-closed, \(f(F) \) is \(\hat{g}^s \)-closed in \(Y. \) Since \(g \) is \(\hat{g} \)-irresolute and \(\hat{g}^s \)-closed and \(f(F) \) is \(\hat{g}^s \)-closed in \(Y, \) by proposition 3.25, \(g(f(F)) \) is \(\hat{g}^s \)-closed in \(Z. \) Hence \(g \circ f : X \rightarrow Z \) is \(\hat{g}^s \)-closed.

Proposition 3.27 If \(f : X \rightarrow Y \) is closed and \(g : Y \rightarrow Z \) is \(\hat{g}^s \)-closed, then \(g \circ f : X \rightarrow Z \) is \(\hat{g}^s \)-closed.

Proof. Let \(F \) be a closed set of \(X. \) Since \(f \) is closed, \(f(F) \) is closed in \(Y. \) Since \(g \) is \(\hat{g}^s \)-closed, \(g(f(F)) = g \circ f(F) \) is \(\hat{g}^s \)-closed in \(Z. \) Hence \(g \circ f : X \rightarrow Z \) is \(\hat{g}^s \)-closed.

Proposition 3.28 Let \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) be two maps such that \(g \circ f : X \rightarrow Z \) be a \(\hat{g}^s \)-open map. Then \(g \) is \(\hat{g}^s \)-open, if \(f \) is continuous and surjective.

Proof. Let \(A \) be open in \(Y. \) Since \(f \) is continuous, \(f^{-1}(A) \) is open in \(X. \) Since \(f^{-1}(A) \) is open in \(X, g \circ f(f^{-1}(A)) \) is \(\hat{g}^s \)-open in \(Z. \) i.e., \(g(A) \) is \(\hat{g}^s \)-open in \(Z. \) Therefore, \(g \) is a \(\hat{g}^s \)-open map.

Proposition 3.29 For any bijection \(f : X \rightarrow Y, \) the following are equivalent:

(i) \(f^{-1} : Y \rightarrow X \) is \(\hat{g}^s \)-continuous.

(ii) \(f \) is \(\hat{g}^s \)-open.

(iii) \(f \) is \(\hat{g}^s \)-closed.

Proof. (i) \(\Rightarrow \) (ii)

Let \(F \) be open in \(X. \) Then \(X - F \) is closed in \(X. \) Since \(f^{-1} \) is \(\hat{g}^s \)-continuous, \((f^{-1})^{-1}(X - F) = f(X - F) = Y - f(F) \) is \(\hat{g}^s \)-closed in \(Y. \) Then \(f(F) \) is \(\hat{g}^s \)-open in \(Y. \) Hence \(f \) is \(\hat{g}^s \)-open.
(ii) ⇒ (iii)

Let \(F \) be closed in \(X \). Then \(X - F \) is open in \(X \). Since \(f \) is \(\hat{g}^s \)-open, \(f(X - F) = Y - f(F) \) is \(\hat{g}^s \)-open in \(Y \). Then \(f(F) \) is \(\hat{g}^s \)-closed in \(Y \). Hence \(f \) is \(\hat{g}^s \)-closed.

(iii) ⇒ (i)

Let \(V \) be closed in \(X \). Since \(f : X \rightarrow Y \) is \(\hat{g}^s \)-closed, \(f(V) \) is \(\hat{g}^s \)-closed in \(Y \).

i.e., \(f^{-1}(V) \) is \(\hat{g}^s \)-closed in \(Y \). Therefore \(f^{-1} \) is \(\hat{g}^s \)-continuous.

References

[8] S. Poius Missier and M. Anto, \(\hat{g}^s \)-closed sets in topological spaces, (submitted)