ON gg-CONTINUOUS AND gg-IRRESOLUTE MAPS IN TOPOLOGICAL SPACES

Basavaraj M. Ittanagi*1 and Govardhana Reddy H G2

*1Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state, India
dr.basavarajsit@gmail.com
2Department of Mathematics, Alliance College of Engineering and Design, Alliance University, Bangalore, Karnataka state, India
govardhanareddyhg@gmail.com

Abstract: In this research paper, a new class of continuous functions called gg-continuous maps in topological space are introduced and studied. Also some of their properties have been investigated. We also introduce gg-irresolute maps, strongly gg-continuous maps, perfectly gg-continuous maps and discuss some properties.

Keywords: gg-closed sets, gg-open sets, gg-continuous maps, gg-irresolute maps, strongly gg-continuous maps and perfectly gg-continuous maps.

1. INTRODUCTION

The concept of continuous functions play a very important role in general topology. The regular continuous and completely continuous functions are introduced and studied by Arya S P [2]. Later, R S walli et al all [31] introduced and investigated rw-continuous functions in topological space. Recently, Basavaraj M Ittanagi et al [5] introduced and studied the basic properties of gg-closed sets in topological space. The aim of this paper is to introduce and study basic properties of gg-continuous and irresolute maps in topological space.

2. PRLIMINARIES

In this paper X or (X, τ) and Y or (Y, σ) denote topological spaces on which no separation axioms are assumed. For a subset A of a topological space X, cl(A), int(A), X-A or A c represent closure of A, interior of A and complement of A in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called a
1. Regular open set [24] if A=int(cl(A)) and regular closed if A=cl(int(A))
2. Regular semi open set [8] if there exists a regular open set U such that U A cl(U)
3. Generalized closed set (g-closed) [16] if cl(A) U whenever A U and U is open in (X, τ).
4. gg-closed set [5] if gcl(A) U whenever A U and U is regular semi open in (X, τ).

The complement of the closed sets mentioned above are their open sets respectively and vice versa.

Definition 2.2 A function f: (X, τ)→(Y, σ) is called a
1. Continuous [15] if f(V) is closed in X for every closed subset V of Y.
2. Regular continuous [2] if f(V) is r-closed in X for every closed subset V of Y.
3. Completely continuous [2] if f(V) is regular closed in X for every closed subset V of Y.
4. α continuous [14] if f(V) is α-closed in X for every closed subset V of Y.
5. Semi continuous [15] if f(V) is semi closed in X for every closed subset V of Y.
6. Semi pre continuous [1] if f(V) is semi pre closed in X for every closed subset V of Y.
7. Strongly Continuous [24] if f(V) is clopen in X for every subset V of Y.
8. g-continuous [4] if f(V) is g closed in X for every closed subset V of Y.
9. w-continuous [28] if f(V) is w closed in X for every closed subset V of Y.
10. gr-continuous [22] if f(V) is gr closed in X for every closed subset V of Y.
11. g*-continuous [30] if f(V) is g* closed in X for every closed subset V of Y.
12. swg*-continuous [19] if f(V) is swg* closed in X for every closed subset V of Y.
13. βwg*-continuous [11] if f(V) is βwg* closed in X for every closed subset V of Y.
14. rαg-continuous [21] if f(V) is rαg closed in X for every closed subset V of Y.
15. rwg-continuous [20] if f(V) is rwg closed in X for every closed subset V of Y.
Theorem 3.5

Not a continuous function as the closed set \(F = \{ q \} \) in \(Y \), \(f : X \rightarrow Y \) defined by \(f(p) = q \), \(f(q) = r \), \(f(r) = r \) is \(gg \) continuous but not conversely.

Example 3.4

Let \(X = Y = \{ p, q, r \} \). Let \(\tau = \{ \varnothing, X, \{ p \}, \{ q \}, \{ p, q \}, \{ p, r \} \} \) be a topology on \(X \) and \(\sigma = \{ \varnothing, Y, \{ p \}, \{ q \}, \{ p, q \}, \{ p, r \} \} \) be a topology on \(Y \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function defined by \(f(p) = q \), \(f(q) = q \), \(f(r) = r \) is \(gg \) continuous but not a continuous function as the closed set \(F = \{ q \} \) in \(Y \), \(f^{-1}(F) = \{ p, q \} \) is not a closed set in \(X \).

Definition 3.2

A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called a

1. Irresolute if \(f^{-1}(V) \) is semi closed in \(X \) for every semi closed subset \(V \) of \(Y \).
2. \(w \)-Irresolute [28] if \(f^{-1}(V) \) is \(w \)-closed in \(X \) for every \(w \)-closed subset \(V \) of \(Y \).
3. \(gc \)-Irresolute [27] if \(f^{-1}(V) \) is \(g \)-closed in \(X \) for every \(g \)-closed subset \(V \) of \(Y \).
4. Contra \(w \) Irresolute [28] if \(f^{-1}(V) \) is \(w \)-open in \(X \) for every \(w \)-closed subset \(V \) of \(Y \).
5. Contra Irresolute [14] if \(f^{-1}(V) \) is semi open in \(X \) for every semi closed subset \(V \) of \(Y \).
6. Contra \(r \)-Irresolute [2] if \(f^{-1}(V) \) is regular open in \(X \) for every regular closed subset \(V \) of \(Y \).
7. Contra continuous [13] if \(f^{-1}(V) \) is open in \(X \) for every closed subset \(V \) of \(Y \).

Results 2.4 [5]

1) Every closed (respectively regular closed, \(g \)-closed, \(w \)-closed, \(gr \)-closed, \(g^* \)-closed, \(swg^* \)-closed and \(\beta \) \(swg^* \) closed) set is \(gg \)-closed set in \(X \).
2) Every \(gg \)-closed set is \(r^*g \)-closed (respectively \(rwg \)-closed and \(\beta \) \(wg^* \) closed) set in \(X \).

Results 2.5 [5]

Let \(A \) be a subset of a topological space \((X, \tau)\)

1) If \(A \) is semi open and \(swg^* \)-closed then \(A \) is \(gg \)-closed in \(X \).
2) If \(A \) is regular open and \(gg \)-closed then \(A \) is \(g \)-closed in \(X \).
3) If \(A \) is open and \(g \)-closed then \(A \) is \(gg \)-closed in \(X \).
4) If \(A \) is open and \(gr \)-closed then \(A \) is \(gg \)-closed in \(X \).
5) If \(A \) is regular open and \(gg \)-closed then \(A \) is \(re \)gular closed in \(X \).
6) If \(A \) is semi open and \(w \)-closed then \(A \) is \(gg \)-closed in \(X \).
7) If \(A \) is semi open and \(swg^* \)-closed then \(A \) is \(gg \)-closed in \(X \).

3. \(gg \)-CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

Definition 3.1

A function \(f \) from a topological space \(X \) in to a topological space \(Y \) is called a \(gg \)-continuous if inverse image of every closed subset in \(Y \) is a \(gg \)-closed set in \(X \).

Example 3.2

Let \(X = Y = \{ p, q, r \} \). Let \(\tau = \{ \varnothing, X, \{ p \}, \{ q \}, \{ p, q \}, \{ p, r \} \} \) be a topology on \(X \) and \(\sigma = \{ \varnothing, Y, \{ p \}, \{ q \}, \{ p, q \} \} \) be a topology on \(Y \). Let \(f : X \rightarrow Y \) defined by \(f(p) = q \), \(f(q) = r \), \(f(r) = r \) is \(gg \)-continuous.

Theorem 3.3

Every continuous function is \(gg \)-continuous but not conversely.

Proof: Let \(f : X \rightarrow Y \) be continuous and \(F \) be any closed set in \(Y \). Then \(f^{-1}(F) \) is closed set in \(X \). Since every closed set in \(X \) is \(gg \)-closed then \(f^{-1}(F) \) is \(gg \)-closed set in \(X \). Therefore \(f \) is \(gg \)-continuous.

Example 3.4

Let \(X = Y = \{ p, q, r \} \). Let \(\tau = \{ \varnothing, X, \{ p \}, \{ q \}, \{ p, q \}, \{ p, r \} \} \) be a topology on \(X \) and \(\sigma = \{ \varnothing, Y, \{ p \}, \{ q \}, \{ p, q \}, \{ p, r \} \} \) be a topology on \(Y \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function defined by \(f(p) = q \), \(f(q) = q \), \(f(r) = r \) is \(gg \)-continuous but not a continuous function as the closed set \(F = \{ q \} \) in \(Y \), \(f^{-1}(F) = \{ p, q \} \) is not a closed set in \(X \).

Theorem 3.5

Every \(g \)-continuous is \(gg \)-continuous but not conversely.
Proof: The proof follows from the fact that every g-closed set is gg-closed set.

Example 3.6 In example 3.4, f is gg-continuous but not a g-continuous as the closed set F={q} in Y, \(f^{-1}(F) = \{p, q\} \) is not a g-closed set in X.

Theorem 3.7 Every w-continuous is gg-continuous but not conversely.

Proof: The proof follows from the fact that every w-closed set is gg-closed set.

Example 3.8 In example 3.4, f is gg-continuous but not a w-continuous as the closed set F={q} in Y, \(f^{-1}(F) = \{p, q\} \) is not a w-closed set in X.

Theorem 3.9 Every gr-continuous is gg-continuous but not conversely.

Proof: The proof follows from the fact that every gr-closed set is gg-closed set.

Example 3.10 In example 3.4, f is gg-continuous but not a gr-continuous as the closed set F={q} in Y, \(f^{-1}(F) = \{p, q\} \) is not a gr-closed set in X.

Theorem 3.11 Every g*-continuous is gg-continuous but not conversely.

Proof: The proof follows from the fact that every g*-closed set is gg-closed set.

Example 3.12 In example 3.4, f is gg-continuous but not a g*-continuous as the closed set F={q} in Y, \(f^{-1}(F) = \{p, q\} \) is not a g*-closed set in X.

Theorem 3.13 Every swg*-continuous is gg-continuous but not conversely.

Proof: The proof follows from the fact that every swg*-closed set is gg-closed set.

Example 3.14 In example 3.4, f is gg-continuous but not a swg*-continuous as the closed set F={q} in Y, \(f^{-1}(F) = \{p, q\} \) is not a swg*-closed set in X.

Theorem 3.15 Every \(\beta \)wg*-continuous is gg-continuous but not conversely.

Proof: The proof follows from the fact that every \(\beta \)wg*-closed set is gg-closed set.

Example 3.16 In example 3.4, f is gg-continuous but not a \(\beta \)wg*-continuous as the closed set F={q} in Y, \(f^{-1}(F) = \{p, q\} \) is not a \(\beta \)wg*-closed set in X.

Theorem 3.17 Every regular-continuous is gg-continuous but not conversely.

Proof: The proof follows from the fact that every r-closed set is gg-closed set.

Example 3.18 In example 3.4, f is gg-continuous but not a r-continuous as the closed set F={q} in Y, \(f^{-1}(F) = \{p, q\} \) is not a r-closed set in X.

Theorem 3.19 If a map \(f: X \to Y \) is continuous then the following holds.

i) If \(f \) is gg-continuous then it is r^g-continuous but not conversely.

ii) If \(f \) is gg-continuous then it is rwg-continuous but not conversely.

iii) If \(f \) is gg-continuous then it is \(\beta \)wg**-continuous but not conversely.

Proof:

i) Let \(F \) be a closed set in \(Y \). Since \(f \) is gg-continuous then \(f^{-1}(F) \) is gg-closed in \(X \). Since every gg-closed set is r^g closed, then \(f^{-1}(F) \) is r^g closed in \(X \). Hence \(f \) is r^g continuous. Similarly we can prove ii) and iii).
Example 3.20 Let X=Y={p, q, r}. Let τ={ϕ, X, {p}, {q}, {p, q}, {p, r}} be a topology on X and σ={ϕ, Y, {p}, {q}, {p, q}} be a topology on Y. Let f: (X, τ)→(Y, σ) be a function defined by f(p)=r, f(q)=p, f(r)=q is r^g-continuous, rwg-continuous and βwg** continuous but not a gg-continuous function as the closed set F={r} in Y, f^(-1)(F)={p} is not a gg-closed set in X.

Remark 3.21 The following Examples show that gg-continuous is independent with some existing continuous functions in topological spaces.

Example 3.22 Let X=Y={p, q, r}. Let τ={ϕ, X, {p}, {q}, {p, q}} be a topology on X and σ={ϕ, Y, {p}, {q}, {p, q}, {a, c}} be a topology on Y. Let f: (X, τ)→(Y, σ) be a function defined by f(p)=q, f(q)=r, f(r)=p is gg-continuous but not a semi continuous, semi pre continuous, α-continuous, sg-continuous, gs-continuous, α g-continuous, gα-continuous, wα-continuous, gsp-continuous, gp-continuous, swg-continuous, wg-continuous, g*p-continuous, rps-continuous, αrw-continuous, ρ-continuous as the closed set F={b, c} in Y, f^(-1)(F)={a, b} is not a semi closed (respectively semi pre closed, α-closed, sg-closed, gs-closed, αg-closed, gα-closed, wα-closed, gsp-closed, gp-closed, swg-closed, wg-closed, g*p-closed, rps-closed, αrw-closed, ρ-closed) set in X.

Example 3.23 Let X={a, b, c, d} and τ={ϕ, X, {a}, {b}, {a, b}, {a, b, c}} be a topology on X. Let σ={ϕ, Y, {a, b}} be a topology on Y. Let f: (X, τ)→(Y, σ) be a function defined by f(a)=a, f(b)=a, f(c)=c, f(d)=b is semi continuous, semi pre continuous, α-continuous, sg-continuous, gs-continuous, αg-continuous, gα-continuous, wα-continuous, gsp-continuous, gp-continuous, swg-continuous, wg-continuous, g*p-continuous, rps-continuous, αrw-continuous, ρ-continuous but not a gg-continuous as the closed set F={c} in Y, f^(-1)(F)={c} is not a gg-closed set in X.

Remark 3.24 From the above discussions and known facts, the relation between gg-continuous and some existing continuous functions in topological space is shown in the following figure.

Theorem 3.25 Let f: X→Y be a map. Then the following statements are equivalent.
i) f is gg-continuous

ii) The inverse image of each open set in Y is gg-open in X.

Proof:

i) Let f: X→Y be a gg-continuous. Let U be an open set in Y, then U^c is closed in Y. Since f is gg-continuous, f^(-1)(U^c) is gg-closed in X. But f^(-1)(U^c)=X-f^(-1)(U). Thus f^(-1)(U) is gg-open in X.

ii) Suppose that inverse image of each open set in Y is gg-open in X. Let V be any closed set in Y. By assumption f^(-1)(V) is gg-open in X. But f^(-1)(V)=X-f^(-1)(V). Thus X-f^(-1)(V) is gg-open in X and so f^(-1)(V) is gg-closed in X. Thus f is gg-continuous. Hence the Proof.

Theorem 3.26 If f: (X, τ)→(Y, σ) is a map then the following holds.

i) If f is gg-continuous and contra r-irresolute map then f is g-continuous.

ii) If f is g-continuous and contra continuous map then f is gg-continuous.

iii) If f is swg* continuous and contra irresolute map then f is gg-continuous.

iv) If f is gg-continuous and contra r-irresolute map then f is regular continuous.

v) If f is gr-continuous and contra continuous then f is gg-continuous.

vi) If f is w-continuous and contra irresolute then f is gg-continuous.

vii) If f is w-irresolute then it is gg-continuous.

Proof: Let V be any regular closed set of Y. Since every regular closed set is closed, V is closed set in Y. Also f(A) is closed set in X. By results 2.5 [5] f^(-1)(V) is g-closed in X. Thus f is g-continuous.

Theorem 3.27 If f: (X, τ)→(Y, σ) be a map. Then the following statements are equivalent

i) For each point x∈X and each open set V in Y with f(x)∈V, there is a gg-open set U containing x such that x∈U and f(U)⊆V.

ii) For each subset A of X, f(ggcl(A))⊆cl(f(A))

iii) For each subset B of Y, ggcl(f^(-1)(B)) ⊆ f^(-1)(cl(B))

Proof:

(i)→(ii) Suppose (i) holds and let y∈f(ggcl(A)) and V be an open set containing y. From (i), there exists x∈ggcl(A) such that f(x)=y and gg-open set U containing x such that x∈U and f(U)⊆V and x∈ggcl(A). Then by theorem 3.29, U∩A≠ φ. That is φ ≠ f(U∩A)⊆f(U)∩f(A)⊆V∩f(A). Therefore f(ggcl(A))⊆cl(f(A)).

(ii)→(i) Suppose (ii) holds and V be an open set in Y containing f(x). Let A∈f^(-1)(V). This implies that x∉A. Since f(ggcl(A))⊆cl(f(A)) ⊆ V. This implies that ggcl(A)⊆f^(-1)(V)=A. Since x∉A implies that x∉ggcl(A) and by theorem 3.29, there exists a gg-open set U containing x such that U∩A≠ φ then U⊆A^c and hence f(U)⊆f(A^c)⊆V.
(ii) \implies(iii)
Suppose (ii) holds. Let B be any subset of Y. Replacing A by $f^{-1}(B)$ in (ii) we get $f(ggcl(f^{-1}(B))) \subseteq \text{cl}(f(f^{-1}(B))) \subseteq \text{cl}(B)$. Hence $ggcl(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$.

(iii) \implies(ii)
Suppose (iii) holds. Let $B=f(A)$ where A is a subset of X. Then from (iii) we get $ggcl(f^{-1}(f(A))) \subseteq f^{-1}(\text{cl}(f(A)))$. That is $ggcl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $ggcl(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$.

Definition 3.31 Let (X, τ) be a topological space and $\tau_{gg} = \{ V \subseteq X / ggcl(V) = V^c \}$ is a topology on X.

Definition 3.32 A topological space (X, τ) is called a gg_{Tc} space if every gg-closed is closed.

Definition 3.33 A topological space (X, τ) is called a gg_{Tcg} space if every gg-closed is g-closed in X.

Remark 3.34 The composition of two gg-continuous maps need not be continuous.

Example 3.35 Let $X = Y = Z = \{ p, q, r \}$. Let $\tau = \{ \emptyset, X, \{ p \}, \{ q \}, \{ p, q \}, \{ p, r \} \}$ be a topology on X, $\sigma = \{ \emptyset, Y, \{ q \}, \{ p, q \}, \{ p, r \} \}$ be a topology on Y, and $\eta = \{ \emptyset, Z, \{ p \}, \{ q \}, \{ p, q \}, \{ p, r \} \}$ be a topology on Z. Let $f: (X, \tau) \rightarrow (Y, \sigma)$, $g: (Y, \sigma) \rightarrow (Z, \eta)$ and $gof: (X, \tau) \rightarrow (Z, \eta)$ are identity functions. Both f and g are gg-continuous but gof is not a gg-continuous map as the closed set $F = \{ q \}$ in Z, $(gof)^{-1}(F) = \{ q \}$ is not gg-closed set in X.

Theorem 3.36 Let $f: X \rightarrow Y$ be gg-continuous and $g: Y \rightarrow Z$ is continuous then $gof: X \rightarrow Z$ is gg-continuous.

Proof: Let V be any open set in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Since f is gg-continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is gg-open in X. Hence gof is gg-continuous.

Theorem 3.37 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be gg-continuous functions and Y be gg_{Tc} space then $gof: X \rightarrow Z$ is gg-continuous.

Proof: Let V be any open set in Z. Since g is gg-continuous, $g^{-1}(V)$ is gg-open in Y and Y is gg_{Tc} space, then $g^{-1}(V)$ is open in Y. Since f is gg-continuous $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is gg-open in X. Hence gof is gg-continuous.

Definition 3.38 A function $f: X \rightarrow Y$ is called a perfectly gg-continuous if $f^{-1}(V)$ is clopen (open and closed) set in X for every gg-open set V in Y.

Theorem 3.39 If $f: X \rightarrow Y$ is continuous then the following holds.

i) If f is perfectly gg-continuous then it is gg-continuous.

ii) If f is perfectly gg-continuous then it is r^*g-continuous (rwg-continuous and β wg^{**}-continuous).

Proof: i) Let U be open set in Y. Since f is perfectly continuous then $f^{-1}(U)$ is both open and closed in X. Since every open is gg-open, $f^{-1}(U)$ is gg-open in X. Hence f is gg-continuous.

Similarly we can prove ii).

Definition 3.40 A function $f: X \rightarrow Y$ is called gg^{*}-continuous if $f^{-1}(V)$ is gg-closed set in X for every g-closed set V in Y.

Theorem 3.41 If $f: X \rightarrow Y$ is gg^{*}-continuous then it is gg-continuous but converse is not true.

Proof: Let $f: X \rightarrow Y$ be gg^{*}-continuous. Let F be any closed set in Y. Since f is gg^{*}-continuous, $f^{-1}(F)$ is gg-closed set in X. Since every closed set is g-closed set in Y then the inverse image $f^{-1}(F)$ is gg-closed set in X. Hence f is gg-continuous.

Example 3.42 Let $X = Y = \{ p, q, r \}$. Let $\tau = \{ \emptyset, X, \{ p \}, \{ q \}, \{ p, q \} \}$ be a topology on X and $\sigma = \{ \emptyset, Y, \{ q \}, \{ p, q \}, \{ p, r \} \}$ be a topology on Y. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(p) = r$, $f(q) = q$, $f(r) = r$ is gg-continuous but not a gg^{*}-continuous function as the g-closed set $F = \{ q \}$ in Y, $f^{-1}(F) = \{ q \}$ is not a gg-closed set in X.

© JGRMA 2017. All Rights Reserved
Definition 3.43: A function $f: X \rightarrow Y$ is called a gg-irresolute map if $f^1(V)$ is gg-closed in X for every gg-closed set V in Y.

Definition 3.44: A function $f: X \rightarrow Y$ is called a strongly gg-continuous map if $f^1(V)$ is closed set in X for every gg-closed set V in Y.

Theorem 3.45: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is gg-irresolute then it is gg-continuous but not conversely.

Proof: Let $f: X \rightarrow Y$ be gg-irresolute. Let F be any closed set in Y and hence gg-closed in Y. Since f is gg-irresolute, $f^{-1}(V)$ is gg-closed set in X. Therefore f is gg-continuous.

Example 3.46: Let $X=\{p, q, r\}$. Let $\tau=\{\varnothing, X, \{p\}, \{q\}, \{p, q\}, \{p, r\}\}$ be a topology on X and $\sigma=\{\varnothing, Y, \{p\}, \{q\}, \{p, q\}, \{p, r\}\}$ be a topology on Y. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(p)=p, f(q)=r, f(r)=r$ is gg-continuous but not a gg-irresolute map as the gg-closed set $F=\{q\}$ in Y, $f^{-1}(F)=\{p\}$ is not a gg-closed set in X.

Theorem 3.47: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is gg-irresolute if and only if $f^{-1}(V)$ is gg-open set in X for every open set V in Y.

Proof: Suppose that $f: X \rightarrow Y$ is gg-irresolute and U be gg-open set in Y. Then U^c is gg-closed in Y. By the definition of gg-irresolute, $f^{-1}(U^c)$ is gg-closed in X. But $f^{-1}(U^c)=X-f^{-1}(U)$. Thus $f(U)$ is gg-open in X.

Conversely
Suppose that $f^{-1}(F)$ is gg-open in X for every gg-open set F in Y. Let F be any gg-closed set in Y. By the definition, $f^{-1}(F)$ is gg-open in X. But $f^{-1}(F)=X-f^{-1}(F)$. Thus $X-f^{-1}(F)$ is gg-open in X and hence $f^{-1}(F)$ is gg-closed in X. therefore f is gg-irresolute.

Theorem 3.48: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is gg-irresolute then it is gg*-continuous but not conversely.

Proof: Let $f: X \rightarrow Y$ be gg-irresolute. Let F be any g-closed set in Y and hence f is gg-closed in Y. By the definition of gg-irresolute, $f^1(V)$ is gg-closed set in X. Therefore f is gg*-continuous.

Example 3.49: Let $X=\{p, q, r\}$. Let $\tau=\{\varnothing, X, \{p\}, \{q\}, \{p, q\}\}$ and $\sigma=\{\varnothing, Y, \{p\}, \{q\}, \{p, q\}, \{p, r\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(p)=p, f(q)=q, f(r)=r$ is gg*-continuous but not a gg-irresolute map as the gg-closed set $F=\{p, q\}$ in Y, $f^{-1}(F)=\{p\}$ is not a gg-closed set in X.

Theorem 3.50: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is gg-irresolute then $f(ggcl(A)) \subseteq ggcl(f(A))$ for every subset A of X.

Proof: Let $A \subseteq X$ and $ggcl(f(A))$ is gg-closed in Y. Since f is gg-irresolute, $f^{-1}(ggcl(A))$ is gg-closed in X. Further $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(ggcl(f(A)))$. By the definition of gg-closure, $ggcl(A) \subseteq f^{-1}(ggcl(f(A)))$. Hence $f(ggcl(A)) \subseteq ggcl(f(A))$.

Theorem 3.51: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

1) $gof: (X, \tau) \rightarrow (Z, \eta)$ is gg-irresolute if g is gg-irresolute and f is gg-irresolute

2) $gof: (X, \tau) \rightarrow (Z, \eta)$ is gg-continuous if g is gg-continuous and f is gg-irresolute.

Proof: (i) Let F be any gg-closed set in (Z, η). Since g is gg-irresolute then $g^{-1}(F)$ is gg-closed set in (Y, σ). Since f is gg-irresolute $f^{-1}(g^{-1}(F))$ is gg-closed set in (X, τ). But $(gof)^{-1}(F)=f^{-1}(g^{-1}(F))$ and hence gof is gg-irresolute.

(ii) Let F be any gg-closed set in (Z, η). Since g is gg-continuous then $g^{-1}(F)$ is gg-closed set in (Y, σ). Since f is gg-irresolute $f^{-1}(g^{-1}(F))$ is gg-closed set in (X, τ). But $(gof)^{-1}(F)=f^{-1}(g^{-1}(F))$ and hence gof is gg-continuous.

Theorem 3.52: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly gg-continuous then f is continuous but converse is not true.

Proof: Let $f: X \rightarrow Y$ be strongly gg-continuous. Let F be any closed set in Y. Since every closed set is gg-closed and hence F is gg-closed set in Y. Since f is strongly gg-continuous then $f^{-1}(F)$ is closed set in X. Therefore f is continuous.

Example 3.53: Let $X=\{p, q, r\}$. Let $\tau=\{\varnothing, X, \{p\}, \{q\}, \{p, q\}\}$ and $\sigma=\{\varnothing, Y, \{p\}, \{q\}, \{p, q\}, \{p, r\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(p)=p, f(q)=b, f(r)=r$ is continuous but not strongly gg-continuous as the gg-closed set $F=\{p, q\}$ in Y, $f^{-1}(F)=\{q\}$ is not a closed set in X.

© JGRMA 2017. All Rights Reserved 48
Theorem 3.54 Every strongly gg-continuous is strongly g-continuous but not conversely.

Proof: Let \(f: X \to Y \) be strongly gg-continuous. Let \(F \) be any g-closed set in \(Y \). Since every g-closed set is gg-closed and hence \(F \) is gg-closed set in \(Y \). Since \(f \) is strongly gg-continuous then \(f^{-1}(F) \) is closed set in \(X \) and hence g-closed set in \(X \). Therefore \(f \) is g-continuous.

Example 3.55 In example 3.53 \(f \) is strongly g-continuous but not a strongly gg-continuous as the gg-closed set \(F=\{p, q\} \) in \(Y \), \(f^{-1}(F)=\{q\} \) is not a closed set in \(X \).

Theorem 3.56 If a mapping \(f: (X, \tau) \to (Y, \sigma) \) is strongly gg-continuous if and only if \(f^{-1}(U) \) is open in \(X \) for every gg-open set \(U \) in \(Y \).

Proof: Suppose that \(f: X \to Y \) is strongly gg-continuous. Let \(U \) be any gg-open set in \(Y \) and hence \(U^c \) is gg-closed set in \(Y \). Since \(f \) is strongly gg-continuous, \(f^{-1}(U) \) is closed set in \(X \). But \(f^{-1}(U^c) = X \setminus f^{-1}(U) \). Thus \(f^{-1}(U) \) is open in \(X \).

Conversely

Suppose that \(f^{-1}(U) \) is open set in \(X \) for every gg-open set \(U \) in \(Y \). Let \(F \) be any gg-closed set in \(Y \) and hence \(F^c \) is gg-open in \(X \). But \(f^{-1}(F^c) = X \setminus f^{-1}(F) \). Thus \(X \setminus f^{-1}(F) \) is open in \(X \) and so \(f^{-1}(F) \) is closed in \(X \). Therefore \(f \) is strongly gg-continuous.

Theorem 3.57 Every strongly continuous is strongly gg-continuous but not conversely.

Proof: Let \(f: X \to Y \) is strongly continuous. Let \(G \) be any gg-open set in \(Y \) and also any subset of \(Y \). Since \(f \) is strongly continuous then \(f^{-1}(G) \) is both open and closed in \(X \), say \(f^{-1}(G) \) is open in \(X \). Therefore \(f \) is strongly gg-continuous.

Example 3.58 Let \(X=Y=\{p, q, r\} \). Let \(\tau=\{\varnothing, X, \{p\}, \{q\}, \{p, q\}, \{p, r\}\} \) and \(\sigma=\{\varnothing, Y, \{p\}, \{q\}, \{p, q\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be a function defined by \(f(p)=p, f(q)=r, f(r)=p \) is strongly gg-continuous but not a strongly continuous as the set \(F=\{p\} \) in \(Y \), \(f^{-1}(F)=\{r\} \) is not a clopen set in \(X \).

Theorem 3.59 Every strongly gg-continuous is gg-continuous but not conversely.

Proof: Let \(f: X \to Y \) be strongly gg-continuous. Let \(F \) be any closed set in \(Y \) and hence gg-closed in \(Y \). Since \(f \) is strongly gg-continuous then \(f^{-1}(F) \) is closed set in \(X \) and hence gg-closed set in \(X \). Therefore \(f \) is gg-continuous.

Example 3.60 In example 3.53, \(f \) is gg-continuous but not strongly gg-continuous as the gg-closed set \(F=\{p, q\} \) in \(Y \), \(f^{-1}(F)=\{p, q\} \) is not a closed set in \(X \).

Theorem 3.61 In discrete topological space, every strongly gg-continuous is strongly continuous.

Proof: Let \(f: X \to Y \) be strongly gg-continuous in a discrete topological space. Let \(F \) be any subset of \(Y \). Since \(F \) is both open and closed subset of \(Y \) in discrete space. We have the following two cases.

Case (i) Let \(F \) be any closed subset of \(Y \) and hence gg-closed in \(Y \). Since \(f \) is strongly gg-continuous then \(f^{-1}(F) \) is closed in \(X \).

Case (ii) Let \(F \) be any open subset of \(Y \) and hence gg-open in \(Y \). Since \(f \) is strongly gg-continuous then \(f^{-1}(F) \) is open in \(X \).

Therefore \(f^{-1}(F) \) is both open and closed in \(X \). Hence \(f \) is strongly continuous.

Theorem 3.62 Let \(f: X \to Y \) and \(g: Y \to Z \) be any two functions. Then

i) \(\text{gof}: X \to Z \) is strongly gg-continuous if both \(f \) and \(g \) are gg-continuous.

ii) \(\text{gof}: X \to Z \) is strongly gg-continuous if \(g \) is strongly gg-continuous and \(f \) is continuous.

iii) \(\text{gof}: X \to Z \) is gg-irresolute if \(g \) is strongly gg-continuous and \(f \) is gg-continuous.

iv) \(\text{gof}: X \to Z \) is continuous if \(g \) is gg-continuous and \(f \) is strongly gg-continuous.

Proof:

i) Let \(G \) be gg-closed set in \((Z, \eta) \). Since \(g \) is strongly gg-continuous then \(g^{-1}(G) \) is closed set in \((Y, \sigma) \) and hence gg-closed set in \((Y, \sigma) \). Since \(f \) is also strongly gg continuous then \(f^{-1}(g^{-1}(G)) \) closed set in \((X, \tau) \). But \((\text{gof})^{-1}(G) = f^{-1}(g^{-1}(G)) \) and hence gof is strongly gg-continuous.
iv) Let G be any closed set in (Z, η). Since g is strongly gg-continuous then $g^{-1}(G)$ is closed set in (Y, σ). Since f is strongly gg-continuous then $f^{-1}(g^{-1}(G))$ is gg-closed set in (X, τ). But $(gof)^{-1}(G) = f^{-1}(g^{-1}(G))$ and hence gof is perfectly gg-continuous.

Theorem 3.63 Let $f: X \to Y$ and $g: Y \to Z$ be any two functions. Then

i) $gof: X \to Z$ is strongly gg-continuous if g is perfectly gg-continuous and f is continuous.

ii) $gof: X \to Z$ is perfectly gg-continuous if g is strongly gg-continuous and f is perfectly gg-continuous.

Proof:

i) Let G be any gg-open set in (Z, η). Since g is perfectly gg-continuous then $g^{-1}(G)$ is clopen set in (Y, σ), say $g^{-1}(G)$ is open set in (Y, σ). Since f is continuous then $f^{-1}(g^{-1}(G))$ is open set in (X, τ). Thus $(gof)^{-1}(G) = f^{-1}(g^{-1}(G))$, Hence gof is strongly gg-continuous.

ii) Let G be a gg-open set in (Z, η). Since g is strongly gg-continuous then $g^{-1}(G)$ is open set in (Y, σ). Since f is perfectly gg-continuous then $f^{-1}(g^{-1}(G))$ clopen set in (X, τ). But $(gof)^{-1}(G) = f^{-1}(g^{-1}(G))$. Hence gof is perfectly gg-continuous.

Theorem 3.64 Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are equivalent.

i) f is strongly gg-continuous

ii) f is perfectly gg-continuous

Proof:

(i) \Rightarrow (ii)

Let G be any open set in (Y, σ). Since f is strongly gg-continuous then $f^{-1}(G)$ is open set in (X, τ). But in discrete space, $f^{-1}(G)$ is closed set in (X, τ). Thus $f^{-1}(G)$ is both open and closed in (X, τ). Hence f is perfectly gg-continuous.

(ii) \Rightarrow (i)

Let U be any gg-open set in (Y, σ). Since f is perfectly continuous then $f^{-1}(G)$ is both open and closed in (X, τ). Hence f is strongly gg-continuous.

Theorem 3.65 Let (X, τ) be any topological space and (Y, σ) be ggT_c space and $f: (X, \tau) \to (Y, \sigma)$ be a map. Then the following are equivalent.

i) f is strongly gg-continuous

ii) f is continuous

Proof:

(i) \Rightarrow (ii)

Let F be any closed set in (Y, σ). Since every closed set is gg-closed and hence F is gg-closed in (Y, σ). Since f is strongly gg continuous then $f^{-1}(F)$ is closed set in (X, τ). Hence f is continuous.

(ii) \Rightarrow (i)

Let G be any gg-closed set in (Y, σ). Since (Y, σ) is ggT_c space, F is closed set in (Y, σ). Since f is continuous then $f^{-1}(G)$ is closed set in (X, τ). Hence f is strongly gg-continuous.

Theorem 3.66 Let $f: (X, \tau) \to (Y, \sigma)$ be a map. Both (X, τ) and (Y, σ) are ggT_c space. Then the following are equivalent.

i) f is gg-irresolute

ii) f is strongly gg-continuous

iii) f is continuous

iv) f is gg-continuous

The proof is obvious.

Theorem 3.67 Let X and Y be ggT_∞ spaces. Then for the function $f: (X, \tau) \to (Y, \sigma)$ the following are equivalent.

i) f is gg-irresolute
ii) f is gg-irresolute

Proof:

(i) \rightarrow (ii)

Let $f : X \rightarrow Y$ be gc-irresolute. Let F be a g-closed set in Y and hence gg-closed in Y. Since f is gc-irresolute then $f^{-1}(F)$ is g-closed set in X and hence gg-closed set in X. Therefore f is gg-irresolute.

(i) \rightarrow (ii)

Let $f : X \rightarrow Y$ be gg-irresolute. Let F be a g-closed set in Y and hence gg-closed in Y. Since f is gg-irresolute then $f^{-1}(F)$ is gg-closed set in X. But X is ggT_{gc} space and hence $f^{-1}(F)$ is g-closed set in X. Therefore f is g-irresolute.

4. CONCLUSION

In this paper we introduced and studied the basic properties of gg-Continuous functions, strongly gg-continuous functions and gg-irresolute maps in topological space (X, τ). Also we studied the relation between gg-continuous functions and existing continuous functions in topological space. Further we will introduce and study basic properties of gg-closed maps and gg-open maps in topological space (X, τ).

5. ACKNOWLEDGMENT

The authors would like to thank the referees for their useful comments and suggestions.

6. REFERENCES

[27] P. Sundaram, Studies on Generalizations of Continuous maps in Topological Spaces, Ph. D. Thesies, Bharathiar University, Coimbatore, 1991