RICCI SOLITONS IN KENMOTSU MANIFOLDS

(1) Showkat Ahmad Rather and (2) Riyaz Ahmad Shah

(1) Asst. Lecturer Department of Mathematics Govt. Degree College Shopian (J and K)

(2) Head Department of Mathematics Govt. Degree College Kulgam (J and K) India

Email: showkat.math.2017@gmail.com

Abstract: The Ricci Soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold. In this paper we will find that the condition for Ricci Soliton in Kenmotsu manifolds to be Shrinking, Steady and Expanding.

Keywords: Bocnher Curvature tensor, Ricci tensor, Curvature tensor.

INTRODUCTION:

All calculation considered in this paper are simple and connected. One of a Ricci Soliton is a triple \((g, v, \lambda)\) with \(g \) a Riemannian metric, \(v \) a vector field and \(\lambda \) is a real scalar such that

\[
\mathcal{L}_v g + 2S + 2\lambda g = 0
\]

Where \(S \) is a Ricci tensor of Riemannian manifold \((M, g)\) and \(\mathcal{L}_v \) denotes the Lie derivative operator along the vector field \(V \). The Ricci soliton is said to be Shrinking, Steady and Expanding according as \(\lambda \) is negative, zero and positive respectively [3].

In 1972 Kenmotsu [9] studied a class of contact Riemannian manifold satisfying some special conditions and this manifold is known as Kenmotsu manifold. Kenmotsu proved that a locally kenmotsu manifold is a warped product \(I \times j^N \) of an interval \(I \) and a Kaehler manifold \(N \) with warping function \(f(t) = Se^t \), where \(S \) is a non-zero constant.

PRELIMINARIES

An \(n \)-dimensional differential manifold \(M \) is said to be an almost contact metric manifold [3]. If it admits an almost contact metric structure \((\phi, \xi, \eta, g)\) consisting of a tensor field \(\phi \) of type \((1,1)\) a vector field \(\xi \), a 1-form \(\eta \), and a Riemannian metric \(g \) compatible with \((\phi, \xi, \eta, g)\) satisfying
\(\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \) \tag{1}

\(\eta \circ \phi = 0, \phi \xi = 0 \) \tag{2}

\(g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y), \quad g(X, \xi) = \eta(X), \) \tag{3}

for all vector fields \(X, Y \) on \(M. \)

An almost contact metric manifold \(M(\phi, \xi, \eta, g) \) is said to be Kenmotsu manifold if

\[(\nabla_X \phi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X. \] \tag{4}

From equation (4), we have

\[\nabla_X \xi = X - \eta(X), \] \tag{5}

where \(\nabla \) denotes the Riemannian connection of \(g. \) In an \(n \)-dimensional Kenmotsu manifold, we have

\[\eta(R(X, Y)Z) = g(X, Z) \eta(Y) - g(Y, Z) \eta(X), \] \tag{6}

\[R(X, Y)\xi = \eta(X)Y - \eta(Y)X, \] \tag{7}

\[R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi, \] \tag{8}

\[R(\xi, X)\xi = X - \eta(X)\xi, \] \tag{9}

where \(R \) is the Riemannian curvature tensor.

Let \((g, V, \lambda) \) be a Ricci soliton is an \(n \)-dimensional Kenmotsu manifold \(M. \)

From equation (5), we have

\[(L_\xi g)(X, Y) = 2[g(X, Y) - \eta(X)\eta(Y)], \] \tag{10}

From equations (1) and (10), we have

\[S(X, Y) = -(\lambda + 1)g(X, Y) + \eta(X)\eta(Y), \] \tag{11}

\[S(\phi X, \phi Y) = S(X, Y) + \lambda \eta(X)\eta(Y) \] \tag{12}
\[QX = -(\lambda + 1)X + \eta(X)\xi,\]
\[S(X, \xi) = -\lambda \eta(X),\]
\[r = -\lambda n - (n - 1),\]

where S is the Ricci tensor, Q is the Ricci operator and r is the scalar curvature on M.

Theorem 1.1: A Ricci soliton in a Kenmotsu Manifold satisfying \(R(\xi, X).B = 0\) is expanding.

Proof: Suppose \(R(\xi, X).B(Y, Z)W = 0\) then we have

Now using equation (8) in above equation, we get

\[\eta(B(Y, Z)W - g(X, B(Y, Z)W)\xi - B(\eta(Y)X - g(X, Y)\xi, Z)W - B(Y, \eta(Z)X - g(X, Z)\xi)W - B(Y, Z)\eta(W)X - g(X, W)\xi) = 0\]

\[\Rightarrow \eta(B(Y, Z)W)X - g(X, B(Y, Z)W)\xi - (1 - \lambda + \frac{4}{n+3})g(X, W)\eta(Z) - g(Z, W)\eta(X)\eta(Y) - (1 - \lambda + \frac{4}{n+3})g(X, W)\eta(Z) - g(Z, W)\eta(X)\eta(Y) = 0.\]

Taking an inner product of above equation with \(\xi\), we get

\[\eta(B(Y, Z)W)X - g(X, B(Y, Z)W) - g(X, B(Y, Z)W)\xi - B(\eta(Y)X - g(X, Y)\xi, Z)W - B(Y, \eta(Z)X - g(X, Z)\xi)W - B(Y, Z)\eta(W)X - g(X, W)\xi) = 0.\]

\[\Rightarrow \eta(B(Y, Z)W)X - g(X, B(Y, Z)W)\xi - B(\eta(Y)X - g(X, Y)\xi, Z)W - B(Y, \eta(Z)X - g(X, Z)\xi)W - B(Y, Z)\eta(W)X - g(X, W)\xi) = 0.\]

\[\Rightarrow (1 - \lambda + \frac{4}{n+3})g(X, W)\eta(Y) - g(Z, W)\eta(X)\eta(Y) = 0.\]

\[\Rightarrow (1 - \lambda + \frac{4}{n+3})g(X, W)\eta(Y) - g(Z, W)\eta(X)\eta(Y) = 0.\]

\[\Rightarrow (1 - \lambda + \frac{4}{n+3})g(X, Y)\eta(Y) - g(X, W)\eta(Y) = 0.\]
\[Z) \ g(X, \phi W)] - \frac{D}{n+3} [\eta(Z)\eta(X)g(Y, W) - \eta(Z)\eta(W)g(X, Y) + \eta(Y)\eta(W)g(X, Z) - \eta(Y)\eta(X)g(Z, W)] + \frac{D-4}{n+3} \\
[g(Y, W) g(Z, X) - g(Z, W) g(X, Y) = 0.
\]

Taking \(X = Y = e \) in above equation and summing over \(i, 1 \leq i \leq n \), we get

\[
[1 - \lambda \frac{n+3}{n+3} + \frac{4}{n+3}] [\ g(Z, W) - n g(Z, W)] - S(Z, W) - \frac{1}{n+3} [S(Z, W) - n S(Z, W) - r g(Z, W) + S(Z, W) - S(\phi Z, \phi W) - S(\phi Z, \phi W) - S(\phi W, \phi Z) + r \eta(Z)\eta(W) + \lambda \eta(Z)\eta(W) + S(Z, W) + \lambda \eta(Z)\eta(W) + D+1 \frac{n-1}{n+3} [-g(\phi Z, \phi W) - 2g(\phi Z, \phi W)] - \frac{D}{n+3} [\eta(Z)\eta(W) - n \eta(Z)\eta(W) + \eta(Z)\eta(W) - g(Z, W)] + \frac{D-4}{n+3} [g(Z, W)] - n g(Z, W)] = 0,
\]

\[
\Rightarrow [1 - \lambda \frac{n+3}{n+3} + \frac{4}{n+3}] [1 - (n) g(Z, W) - S(Z, W) - \frac{1}{n+3} [S(Z, W) - n S(Z, W) - r g(Z, W) + (r - 4\lambda) \eta(Z)\eta(W)] + \frac{D+1}{n+3} [-3g(Z, W) + 3 \eta(Z)\eta(W)] - \frac{D}{n+3} [2n \eta(Z)\eta(W) - g(Z, W)] = 0,
\]

\[
\Rightarrow [1 - \lambda \frac{n+3}{n+3} + \frac{4}{n+3}] [1 - (n) g(Z, W) - S(Z, W) - \frac{1}{n+3} [(n+3)(\lambda+1)g(Z, W)-(n+3) \eta(Z)\eta(W) - rg(Z, W) + (r-4\lambda) \\
\eta(Z)\eta(W)] + \frac{D+1}{n+3} [-3g(Z, W) + 3 \eta(Z)\eta(W)] - \frac{D}{n+3} [2n \eta(Z)\eta(W) - g(Z, W)] = 0,
\]

\[
\Rightarrow [1 - \lambda \frac{n+3}{n+3} + \frac{4}{n+3}] [1 - (n+1) - (\lambda+1) + \frac{r}{n+3} - 3\frac{D+1}{n+3} + \frac{D}{n+3}] [g(Z, W) + [\frac{1}{n+3} (r - 4 \lambda - 3n) + 3\frac{D+1}{n+3} - \frac{2-n}{n+3}] \\
\eta(Z)\eta(W) = S(Z, W)
\]

\[
(n+3) S(Z, W) = [-n (n+3) - 4 \lambda + (n-3)D + r -3n + 3]g(Z, W) + [-r + 4 \lambda + 4n + (n+1) D] \eta(Z)\eta(W).
\]

Putting \(Z = W = \xi \) in above equation and using equations (11) and (15), we get

\[
\lambda = (n-1).
\]

This shows that \(\lambda \) is positive that is, the Ricci soliton in Kenmotsu manifold satisfying \(R(\xi, X) \cdot B = 0 \) is expanding.

REFERENCES

