C-Class Function on New Contractive Conditions of Integral Type on Complete S-Metric Spaces

Arslan Hojat Ansari1, D. Dhamodharan2, Yumnam Rohen3, R. Krishnakumar4

1Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
analisisamirmath2@gmail.com1

2Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, India.
dharanraj28@yahoo.co.in2

3 Department of Mathematics, National Institute of Technology, Manipur, Imphal-795004, India
ymnehor2008@yahoo.com3

4Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli-620019, India
srksacet@yahoo.co.in4

Abstract: In this paper, we generalised the concept of a new contractive conditions of integral type on complete S-metric spaces via C-class function.

Keywords: Integral-type contractive conditions, Fixed point, S-metric, C-class function

2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

INTRODUCTION AND MATHEMATICAL PRELIMINARIES

In this paper we discuss generalised result on C-class function on new contractive conditions of integral type on complete S-metric spaces.

Definition 1.1 Let $X \neq \emptyset$ be any set and $S : X \times X \times X \rightarrow [0, \infty)$ be a function satisfying the following conditions for all $u, v, z, a \in X$.

1. $S(u, v, z) \geq 0$
2. \(S(u, v, z) = 0 \) if and only if \(u = v = z \).

3. \(S(u, v, z) \leq S(u, u, a) + S(v, v, a) + S(z, z, a) \)

Then the function \(S \) is called an \(S \)-metric on \(X \) and the pair \((X, S) \) is called an \(S \)-metric space simply SMS.

Example 1.2 [3] Let \(X \) be a non empty set, \(d \) is ordinary metric space on \(X \), then \(S(x, y, z) = d(x, z) + d(y, z) \) is an \(S \)-metric on \(X \).

Lemma 1.3 Let \((X, S) \) be an \(S \)-metric space. Then we have \(S(u, u, v) = S(v, v, u) \)

Definition 1.4 Let \((X, S) \) be an \(S \)-metric space.

1. A sequence \(\{u_n\} \) in \(X \) converges to \(u \) if and only if \(S(u_n, u_n, u) \rightarrow 0 \) as \(n \rightarrow \infty \). That is, there exists \(n_0 \in \mathbb{N} \) such that for all \(n \geq n_0, S(u_n, u_n, u) < \varepsilon \). We denote this by \(\lim_{n \rightarrow \infty} u_n = u \) or \(\lim_{n \rightarrow \infty} S(u_n, u_n, u) = 0 \).

2. A sequence \(\{u_n\} \) in \(X \) is called a Cauchy sequence if \(S(u_n, u_n, u_m) \rightarrow 0 \) as \(n, m \rightarrow \infty \). That is, there exists \(n_0 \in \mathbb{N} \) such that for all \(n, m \geq n_0, S(u_n, u_n, u_m) < \varepsilon \).

3. The \(S \)-metric space \((X, S) \) is called complete if every Cauchy sequence is convergent.

In the following lemma we see the relationship between a metric and an \(S \)-metric.

Lemma 1.5 Let \((X, d) \) be a metric space. Then the following properties are satisfied:

1. \(S_d(u, v, z) = d(u, z) + d(v, z) \) for all \(u, v, z \in X \) is an \(S \)-metric on \(X \).

2. \(u_n \rightarrow u \) in \(\{X, d\} \) if and only if \(u_n \rightarrow u \) in \((X, S_d) \).

3. \(\{u_n\} \) is Cauchy in \(\{X, d\} \) if and only if \(\{u_n\} \) is Cauchy in \((X, S_d) \).

4. \(\{X, d\} \) is complete if and only if \((X, S_d) \) is complete.
Definition 1.6 [1] A mapping \(F : [0, \infty)^2 \to [0, \infty) \) is called a \(C \)-class function if it is continuous and satisfies following axioms:

1. \(F(s,t) \leq s \);
2. \(F(s,t) = s \) implies that either \(s = 0 \) or \(t = 0 \); for all \(s,t \in [0,\infty) \).

Note for some \(F \) we have that \(F(0,0) = 0 \).
We denote \(C \)-class functions as \(C \).

Example 1.7 [1] The following functions \(F : [0, \infty)^2 \to \mathbb{R} \) are elements of \(C \), for all \(s,t \in [0,\infty) \):

1. \(F(s,t) = s - t, \) \(F(s,t) = s \Rightarrow t = 0; \)
2. \(F(s,t) = ms, \) \(0 < m < 1, \) \(F(s,t) = s \Rightarrow s = 0; \)
3. \(F(s,t) = \frac{s}{(1+t)^r}; \) \(r \in (0,\infty), \) \(F(s,t) = s \Rightarrow s = 0 \) or \(t = 0; \)
4. \(F(s,t) = \log(t+a^r)/(1+t), \) \(a > 1, \) \(F(s,t) = s \Rightarrow s = 0 \) or \(t = 0; \)
5. \(F(s,t) = \ln(1+a^s)/2, \) \(a > e, \) \(F(s,1) = s \Rightarrow s = 0; \)
6. \(F(s,t) = (s+l)^(1/(1+l^r)) - l, \) \(l > 1, r \in (0,\infty), \) \(F(s,t) = s \Rightarrow t = 0; \)
7. \(F(s,t) = s \log_{e^a} a, \) \(a > 1, \) \(F(s,t) = s \Rightarrow s = 0 \) or \(t = 0; \)
8. \(F(s,t) = s - \left(\frac{1+s}{2+s}\right)^{2+t}, \) \(F(s,t) = s \Rightarrow t = 0; \)
9. \(F(s,t) = s \beta(s), \) \(\beta : [0, \infty) \to (0,1), \) and is continuous, \(F(s,t) = s \Rightarrow s = 0; \)
10. \(F(s,t) = s - \frac{t}{k+t}, F(s,t) = s \Rightarrow t = 0; \)
11. \(F(s,t) = s - \varphi(s), F(s,t) = s \Rightarrow s = 0, \) here \(\varphi : [0, \infty) \to [0, \infty) \) is a continuous function such that \(\varphi(t) = 0 \Leftrightarrow t = 0; \)
12. \(F(s,t) = sh(s,t), F(s,t) = s \Rightarrow s = 0, \) here \(h : [0, \infty) \times [0, \infty) \to [0, \infty) \) is a continuous function such that \(h(t,s) < 1 \) for all \(t,s > 0; \)
13. \(F(s,t) = s - \left(\frac{2+t}{1+t}\right)t, F(s,t) = s \Rightarrow t = 0. \)
14. \(F(s,t) = \sqrt[n]{\ln(1+s^n)}, F(s,t) = s \Rightarrow s = 0. \)
15. \(F(s,t) = \phi(s), F(s,t) = s \Rightarrow s = 0, \) here \(\phi : [0, \infty) \to [0, \infty) \) is a upper semi continuous function such that \(\phi(0) = 0 \), and \(\phi(t) < t \) for \(t > 0, \)
16. \(F(s,t) = \frac{s}{(1+s)^r}, r \in (0,\infty), F(s,t) = s. \Rightarrow s = 0; \)

Definition 1.8 [1] A function \(\psi : [0, \infty) \to [0, \infty) \) is called an altering distance function if the following properties are satisfied:

\(\psi \) is non-decreasing and continuous,
\(\psi(t) = 0 \) if and only if \(t = 0. \)
Definition 1.9 [1] An ultra altering distance function is a continuous, nondecreasing mapping \(\varphi: P \to P \) such that \(\varphi(t) > 0, \ t \in [0, \infty) \) and \(\varphi(0) \geq 0. \)

We denote this set with \(\Phi_u \)

Definition 1.10 [13] The set \(\{ a = x_0, x_1, x_2, \ldots, x_n = b \} \) is called a partition for \([a, b] \) if and only if the sets \(\{ x_{i-1}, x_i \}_{i=1}^n \) are pairwise disjoint and \([a, b] = \bigcup_{i=1}^{n} [x_{i-1}, x_i) \cup \{b\} \)

Definition 1.11 [13] The function \(\zeta: [0, \infty) \to [0, \infty) \) is called subadditive integrable function if and only if for all \(a, b \in P, \)

\[
\int_{0}^{a+b} \zeta(t) \, dt \leq \int_{0}^{a} \zeta(t) \, dt + \int_{0}^{b} \zeta(t) \, dt
\]

Example 1.12 Let \(E = X = R, d(x, y) = |x - y|, P = (0, \infty), \) and \(\zeta(t) = \frac{1}{(t+1)} \) for all \(t > 0. \) Then for all \(a, b \in P, \)

\[
\int_{0}^{a+b} \frac{dt}{(t+1)} = \ln(a+b+1), \int_{0}^{a} \frac{dt}{(t+1)} = \ln(a+1), \int_{0}^{b} \frac{dt}{(t+1)} = \ln(b+1)
\]

Since \(ab \geq 0, \) then

\[
a + b + 1 \leq a + b + 1 + ab = (a + 1)(b + 1).
\]

Therefore

\[
\ln(a+b+1) \leq \ln(a+1) \leq \ln(b+1)
\]

This shows that \(\zeta \) is an example of subadditive integrable function.

Theorem 1.13 [4] Let \((X, S) \) be a complete \(S \)-metric space, \(h \in (0,1), \) the function \(\zeta: [0, \infty) \to [0, \infty) \) be defined as for each \(\varepsilon > 0, \int_{0}^{\varepsilon} \zeta(t) \, dt > 0 \) and \(T: X \to X \) be a self-mapping of \(X \) such that

\[
\int_{0}^{S(Tu,Tv,Tw)} \zeta(t) \, dt \leq h \int_{0}^{S(u,v)} \zeta(t) \, dt
\]

for all \(u, v \in X. \) Then \(T \) has a unique fixed point \(w \in X \) and we have \(\lim_{n \to \infty} T^n u = w, \) for each \(u \in X. \)

Theorem 1.14 [4] Let \((X, S) \) be a complete \(S \)-metric space, the function
\(\zeta : [0, \infty) \to [0, \infty) \) be defined as for each \(\varepsilon > 0, \int_0^\varepsilon \zeta(t) \, dt > 0 \) and \(T : X \to X \) be a self-mapping of \(X \) such that

\[
\int_0^{\zeta(TuTv)} \zeta(t) \, dt \leq h_1 \int_0^{\zeta(uTv)} \zeta(t) \, dt + h_2 \int_0^{\zeta(uTv)} \zeta(t) \, dt + h_3 \int_0^{\zeta(uTv)} \zeta(t) \, dt + h_4 \int_0^{\zeta(uTv)} \zeta(t) \, dt + h_5 \int_0^{\zeta(uTv)} \zeta(t) \, dt.
\]

for all \(u, v \in X \) with non-negative real numbers \(h_i (i \in \{1, 2, 3, 4\}) \) satisfying \(\max \{h_1 + 3h_3, 2h_4, h_1 + h_2 + h_3\} < 1 \). Then \(T \) has a unique fixed point \(w \in X \) and we have \(\lim_{n \to \infty} T^n u = w \), for each \(u \in X \).

MAIN RESULT

Theorem 2.1 Let \((X, S) \) be a complete \(S \)-metric space \(\psi : [0, \infty) \to [0, \infty) \) is an altering distance function, \(\varphi \in \Phi_u \) and \(F \in C \), the function \(\zeta : P \to P \) be defined as for each \(\varepsilon > 0, \int_0^\varepsilon \zeta(t) \, dt > 0 \) and \(T : X \to X \) be a self-mapping of \(X \) such that

\[
\psi(\int_0^{S(uTv)} \zeta(t) \, dt) \leq F(\psi(\int_0^{S(uTv)} \zeta(t) \, dt), \varphi(\int_0^{S(uTv)} \zeta(t) \, dt)).
\]

for all \(u, v \in X \), Then \(T \) has a unique fixed point \(w \in X \) and we have \(\lim_{n \to \infty} T^n u = w \), for each \(u \in X \).

Proof. Let \(u_0 \in X \) and the sequence \(\{u_n\} \) be defined as \(T^n u_0 = u_n \). Suppose that \(u_n \neq u_{n+1} \) for all \(n \). Using the inequality (2.1), we obtain

\[
\psi(\int_0^{S(uTv)} \zeta(t) \, dt) \leq F(\psi(\int_0^{S(uTv)} \zeta(t) \, dt), \varphi(\int_0^{S(uTv)} \zeta(t) \, dt)) \leq \psi(\int_0^{\zeta(t)} \zeta(t) \, dt).
\]

so

\[
\int_0^{S(uTv)} \zeta(t) \, dt \leq \int_0^{\zeta(t)} \zeta(t) \, dt
\]

Since \(\int_0^{\zeta(t)} \zeta(t) \, dt > 0 \), there exists \(r \geq 0 \) such that \(\lim_{n \to \infty} \int_0^{S(uTv)} \zeta(t) \, dt = r \).

If \(r > 0 \), then take limit for \(n \to \infty \), we get \(\psi(r) \leq F(\psi((r), \varphi(r)) \).
So \(\psi(r) = 0 \) or \(\varphi(r) = 0 \). Thus \(r = 0 \), which is a contradiction. Thus, we conclude that \(r = 0 \), that is,

\[
\lim_{n \to \infty} \int_0^1 \zeta(t) dt = 0,
\]

since for each \(\varepsilon > 0 \)
\(\int_0^\varepsilon \zeta(t) dt > 0 \), implies
\(\lim_{n \to \infty} S(u_n, u_n, u_{n+1}) = 0. \)

Now we show that the sequence \(\{u_n\} \) is a Cauchy sequence.

Assume that \(\{u_n\} \) is not Cauchy. Then there exists an \(\varepsilon > 0 \) and subsequences \(\{m_k\} \) and \(\{n_k\} \) such that \(m_k < n_k < m_{k+1} \) with

\[
S(u_{m_k}, u_{m_k}, u_{n_k}) \geq \varepsilon
\]

and

\[
S(u_{m_k}, u_{m_k}, u_{n_k-1}) < \varepsilon
\]

Hence using Lemma (1.3), we have

\[
S(u_{m_k-1}, u_{m_k-1}, u_{n_k-1}) \leq 2S(u_{m_k-1}, u_{m_k-1}, u_{n_k}) + S(u_{n_k-1}, u_{n_k-1}, u_{m_k}) < 2S(u_{m_k-1}, u_{m_k-1}, u_{m_k}) + \varepsilon
\]

and

\[
\lim_{k \to \infty} \int_0^1 \zeta(t) dt \leq \int_0^\varepsilon \zeta(t) dt
\]

Using the inequalities (2.1), (2.4) and (2.6) we obtain

\[
\psi(\int_0^\varepsilon \zeta(t) dt) \leq \psi(\int_0^1 \zeta(t) dt) \leq F(\psi(\int_0^1 \zeta(t) dt), \varphi(\int_0^1 \zeta(t) dt)) \leq F(\psi(\int_0^\varepsilon \zeta(t) dt), \varphi(\int_0^\varepsilon \zeta(t) dt))
\]

So \(\psi(\int_0^\varepsilon \zeta(t) dt) = 0 \) or \(\varphi(\int_0^\varepsilon \zeta(t) dt) = 0 \). Thus \(\int_0^\varepsilon \zeta(t) dt = 0 \), which is a contradiction with our assumption. So the sequence \(\{u_n\} \) is Cauchy. Using the completeness hypothesis, there exists \(w \in X \) such that

\[
\lim_{n \to \infty} T^n u_0 = w.
\]

From the inequality (2.1) we find

\[
\psi(\int_0^1 \zeta(t) dt) \leq F(\psi(\int_0^1 \zeta(t) dt), \varphi(\int_0^1 \zeta(t) dt))
\]

If we take limit for \(n \to \infty \), we get
The function \(\psi \) or \(\varphi \). Consequently, the fixed point \(w \in S \). Thus \(\psi(\int_0^1 \zeta(t)dt) = 0 \) or \(\varphi(\int_0^1 \zeta(t)dt) = 0 \).

Thus \(\int_0^1 \zeta(t)dt = 0 \), which implies that \(S(Tw, Tw, w) = 0 \). Thus \(Tw = w \).

Now we show the uniqueness of the fixed point. Suppose that \(w_1 \) is another fixed point of \(T \). Using the inequality (2.1) we have

\[
\psi(\int_0^1 \zeta(t)dt) = \psi(\int_0^1 \zeta(t)dt) \leq F(\psi(\int_0^1 \zeta(t)dt), \varphi(\int_0^1 \zeta(t)dt))
\]

So \(\psi(\int_0^1 \zeta(t)dt) = 0 \) or \(\varphi(\int_0^1 \zeta(t)dt) = 0 \). Thus \(\int_0^1 \zeta(t)dt = 0 \).

Using \(\int_0^1 \zeta(t)dt > 0 \) we get \(w = w_1 \). Consequently, the fixed point \(w \) is unique.

Choosing \(F(s, t) = hs, \ 0 < h < 1, \psi(t) = t, \) in theorem (2.1) we have

Corollary 2.2 [4] Let \((X, S)\) be a complete \(S \)-metric space \(h \in (0, 1) \), the function \(\zeta : P \to P \) be defined as for each \(\varepsilon > 0, \int_0^\varepsilon \zeta(t)dt > 0 \) and \(T : X \to X \) be a self-mapping of \(X \) such that

\[
\int_0^1 \zeta(t)dt \leq h \int_0^1 \zeta(t)dt
\]

for all \(u, v \in X \). Then \(T \) has a unique fixed point \(w \in X \) and we have \(\lim_{n \to \infty} T^n u = w \), for each \(u \in X \).

Example 2.3 Let \(X = R, \ k = 10 \) be a fixed real number and function \(S : X \times X \times X \to [0, \infty) \) be defined as

\[
S(u, v, z) = \frac{z}{k + 1}(|v - z| + |v + z - 2u|)
\]

for all \(u, v, z \in R \). It can be seen that the function \(S \) is an \(S \)-metric. Now we show that \(S \)-metric can not be generated by metric \(\rho \). On the contrary, we assume that there exists a metric \(\rho \) such that

\[
S(u, v, z) = \rho(u, z) + \rho(v, z)
\]

for all \(u, v, z \in R \).
\[\rho(u, z) = \frac{10}{11} |u - z| \]

Similarly, we have

\[S(v, v, z) = 2 \rho(v, z) = \frac{20}{11} (|v - z| + |v + z - 2u|) \]
and

\[\rho(v, z) = \frac{10}{11} |v - z| \]

Using the equalities above equation (2.8), (2.9) and (2.10) we obtain

\[\frac{10}{11} (|v - z| + |v + z - 2u|) = \frac{10}{11} |u - z| + \frac{10}{11} |v - u| \]

which is a contradiction, \(S \) is not generated by any metric and \((R, S)\) is a complete \(S \)-metric space. \(T : R \rightarrow R \) and \(Tu = \frac{u}{4} \) for all \(u \in R \) \(\zeta : P \rightarrow P \) where \(P = (0, \infty) \) as \(\zeta(t) = 2t \)

Let \(F(s, t) = s - t \) for all \(s, t \in [0, \infty) \). Also define \(\varphi, \psi : [0, \infty) \rightarrow [0, \infty) \) by \(\psi(t) = t \) and \(\varphi(t) = \frac{t}{2} \)

\[F(\psi(\int_0^s \zeta(t) dt), \varphi(\int_0^s \zeta(t) dt)) = \psi(\int_0^s \zeta(t) dt) - \varphi(\int_0^s \zeta(t) dt) \]

From equation (2.11), we have

\[F(\psi(\int_0^\varepsilon \zeta(t) dt), \varphi(\int_0^\varepsilon \zeta(t) dt)) = \psi(\int_0^\varepsilon \zeta(t) dt) - \varphi(\int_0^\varepsilon \zeta(t) dt) \]

\[= \psi(\int_0^{2\varepsilon} dt) - \varphi(\int_0^{2\varepsilon} dt) \]

\[= \varepsilon^2 - \frac{\varepsilon^2}{2} > 0 \]

for all \(\varepsilon > 0 \), \(T \) satisfies the inequalities (2.1).

\[\frac{100}{4(121)} |u - v|^2 \leq \frac{4 \times 100}{121} |u - v|^2 \quad \forall u, v \in R \]

\(T \) has a unique fixed point \(u = 0 \).

Theorem 2.4 Let \((X, S)\) be a complete \(S \)-metric space \(\psi : [0, \infty) \rightarrow [0, \infty) \) is an altering distance function, \(\varphi \in \Phi_u \) and \(F \in C \), the function \(\zeta : P \rightarrow P \) be defined as for each \(\varepsilon > 0 \)

\[\int_0^\varepsilon \zeta(t) dt > 0 \]
and \(T : X \rightarrow X \) be a self-mapping of \(X \) such that

© JGRMA 2018, All Rights Reserved
\[
\psi(\int_0 ^{S(Tu, Tv)} \zeta(t)dt) \leq F(\psi(h_1) \int_0 ^{S(Tu, Tv)} \zeta(t)dt + h_2 \int_0 ^{S(Tu, Tv)} \zeta(t)dt + h_3 \int_0 ^{S(Tu, Tv)} \zeta(t)dt \]
\[+ h_4 \int_0 ^{S(Tu, Tv)} \zeta(t)dt, \varphi(h_1) \int_0 ^{S(Tu, Tv)} \zeta(t)dt + h_2 \int_0 ^{S(Tu, Tv)} \zeta(t)dt \]
\[\max \{S(Tu, Tv), S(TTv, u)\} \]
\[\int_0 ^{S(TTv, u)} \zeta(t)dt, \varphi(h_1) \int_0 ^{S(TTv, u)} \zeta(t)dt + h_2 \int_0 ^{S(TTv, u)} \zeta(t)dt \]
\[\max \{S(TTv, u), S(TTv, v)\} \]
\[\int_0 ^{S(TTv, v)} \zeta(t)dt \]

\[\text{for all } u, v \in X \text{ with non negative real numbers } h_i (i \in \{1,2,3,4\}) \text{ satisfying } \max \{h_1 + 3h_4, h_1 + h_2 + h_3\} = 1. \text{ Then } T \text{ has a unique fixed point } w \in X \text{ and we have } \lim_{n \to \infty} T^n u = w, \text{ for each } u \in X. \]

Proof. Let \(u_0 \in X \) and the sequence \(\{u_n\} \) be defined as \(\lim_{n \to \infty} T^n u_0 = u_n \) Suppose that \(u_n \neq u_{n+1} \) for all \(n \). Using the inequality (2.12), the condition (S2) and Lemma 1.3 we get

\[
\psi(\int_0 ^{S(u_n, u_{n+1})} \zeta(t)dt) = \psi(\int_0 ^{S(TTv, u)} \zeta(t)dt) \leq F(\psi(h_1) \int_0 ^{S(u_n, u_{n+1})} \zeta(t)dt + h_2 \int_0 ^{S(u_n, u_{n+1})} \zeta(t)dt \]
\[+ h_3 \int_0 ^{S(u_n, u_{n+1})} \zeta(t)dt + h_4 \int_0 ^{S(u_n, u_{n+1})} \zeta(t)dt, \varphi(h_1) \int_0 ^{S(u_n, u_{n+1})} \zeta(t)dt + h_2 \int_0 ^{S(u_n, u_{n+1})} \zeta(t)dt \]
\[\max \{S(u_n, u_{n+1}), S(TTv, u)\} \]
\[\int_0 ^{S(TTv, u)} \zeta(t)dt, \varphi(h_1) \int_0 ^{S(TTv, u)} \zeta(t)dt + h_2 \int_0 ^{S(TTv, u)} \zeta(t)dt \]
\[\max \{S(TTv, u), S(TTv, v)\} \]
\[\int_0 ^{S(TTv, v)} \zeta(t)dt \]

\[= F(\psi(h_1) \int_0 ^{S(u_{n+1}, u_{n+2})} \zeta(t)dt + h_2 \int_0 ^{S(u_{n+1}, u_{n+2})} \zeta(t)dt \]
\[+ h_3 \int_0 ^{S(u_{n+1}, u_{n+2})} \zeta(t)dt + h_4 \int_0 ^{S(u_{n+1}, u_{n+2})} \zeta(t)dt, \varphi(h_1) \int_0 ^{S(u_{n+1}, u_{n+2})} \zeta(t)dt + h_2 \int_0 ^{S(u_{n+1}, u_{n+2})} \zeta(t)dt \]
\[\max \{S(u_{n+1}, u_{n+2}), S(TTv, u)\} \]
\[\int_0 ^{S(TTv, u)} \zeta(t)dt, \varphi(h_1) \int_0 ^{S(TTv, u)} \zeta(t)dt + h_2 \int_0 ^{S(TTv, u)} \zeta(t)dt \]
\[\max \{S(TTv, u), S(TTv, v)\} \]
\[\int_0 ^{S(TTv, v)} \zeta(t)dt \]
\[F(h_1) \leq F(h_1 + h_3) \]
\[F(h_1 + h_3 + h_4) \]
\[= F((h_1 + h_3 + h_4) \int_0^\infty \zeta(t) dt + (2h_3 + h_4) \int_0^\infty \zeta(t) dt, \varphi(h_1 + h_3 + h_4) \int_0^\infty \zeta(t) dt \]
\[\varphi(h_1 + h_3 + h_4) \int_0^\infty \zeta(t) dt + (2h_3 + h_4) \int_0^\infty \zeta(t) dt \]

which implies
\[\int_0^\infty \zeta(t) dt \leq \frac{h_1 + h_3 + h_4}{1 - 2h_3 - h_4} \int_0^\infty \zeta(t) dt \]

Since \[\int_0^\infty \zeta(t) dt > 0, \]

so there exists \(r \geq 0 \) such that \[\lim_{n \to \infty} \int_0^\infty \zeta(t) dt = r. \]

If \(r > 0 \), then take limit for \(n \to \infty \), we get \[\psi(r) \leq F(\psi(r), \varphi(r)) \]
So \(\psi(r) = 0 \) or \(\varphi(r) = 0 \). Thus \(r = 0 \), which is a contradiction. Thus, we conclude that \(r = 0 \), that is, \[\lim_{n \to \infty} \int_0^\infty \zeta(t) dt = 0, \]

since for each \(\varepsilon > 0 \), \[\int_0^\infty \zeta(t) dt > 0, \]

implies
\[\lim_{n \to \infty} S(u_n, u_n, u_n) = 0. \]

By the similar arguments used in the proof of Theorem (2.1), we see that the sequence \(\{u_n\} \) is Cauchy. Then there exists \(w \in X \) such that \[\lim_{n \to \infty} T^n u_0 = w, \]
since \((X, S) \) is a complete \(S \)-metric space. From the inequality (2.12) we find...
\[\psi(\int_0^1 \zeta(t) \, dt) = \psi(\int_0^1 \zeta(t) \, dt) \leq F(\psi(h_1) \int_0^1 \zeta(t) \, dt + h_2 \int_0^1 \zeta(t) \, dt + h_3 \int_0^1 \zeta(t) \, dt) \]

Taking limit for \(n \to \infty \) and using Lemma 1.3 we get
\[\psi(\int_0^1 \zeta(t) \, dt) \leq F(\psi(h_1) \int_0^1 \zeta(t) \, dt, \psi(h_2) \int_0^1 \zeta(t) \, dt + h_3 \int_0^1 \zeta(t) \, dt) \]
\[\leq \psi(h_1 + h_2) \int_0^1 \zeta(t) \, dt \leq \psi(\int_0^1 \zeta(t) \, dt) \]

So \(\psi(h_1 + h_2) \int_0^1 \zeta(t) \, dt = 0 \) or \(\psi(h_1 + h_2) \int_0^1 \zeta(t) \, dt = 0 \).

Thus \(\int_0^1 \zeta(t) \, dt = 0 \), which implies that \(S(Tw, Tw) = 0 \). Thus \(Tw = w \). Now we show the uniqueness of the fixed point. Let \(w_1 \) be another fixed point of \(T \). Using the inequality (2.12) and Lemma 1.3, we get
\[\psi(\int_0^1 \zeta(t) \, dt) = \psi(\int_0^1 \zeta(t) \, dt) \leq F(\psi(h_1) \int_0^1 \zeta(t) \, dt + h_2 \int_0^1 \zeta(t) \, dt + h_3 \int_0^1 \zeta(t) \, dt) \]

which implies
\[
\psi(\int_0^h \zeta(t) \, dt) \leq F(\psi((h_1 + h_2 + h_3) \int_0^h \zeta(t) \, dt), \varphi((h_1 + h_2 + h_3) \int_0^h \zeta(t) \, dt))
\]
\[
\leq \psi((h_1 + h_2 + h_3) \int_0^h \zeta(t) \, dt)
\]
\[
\leq \psi(\int_0^h \zeta(t) \, dt)
\]

So \(\psi((h_1 + h_2 + h_3) \int_0^h \zeta(t) \, dt) = 0 \) or \(\varphi((h_1 + h_2 + h_3) \int_0^h \zeta(t) \, dt) = 0 \). Then we obtain
\[
\int_0^h \zeta(t) \, dt = 0
\]

that is, \(w = w_1 \) since \(h_1 + h_2 + h_3 < 1 \). Consequently, \(T \) has a unique fixed point \(w \in X \).

Choosing \(F(s, t) = hs, \) \(0 < h < 1, \) \(\psi(t) = t, \) (replace \(h_i \) with \(hh_i \)) in Theorem (2.4) we have

Corollary 2.5 [4]Let \((X, S)\) be a complete \(S \)-metric space \(h \epsilon (0,1) \), the function \(\zeta : P \rightarrow P \) be defined as for each \(\epsilon > 0, \int_0^\epsilon \zeta(t) \, dt > 0 \) and \(T : X \rightarrow X \) be a self-mapping of \(X \) such that
\[
\int_0^{S(Tu, Tu, Tv)} \zeta(t) \, dt \leq h_1 \int_0^{S(u, u, v)} \zeta(t) \, dt + h_2 \int_0^{S(Tv, Tv, u)} \zeta(t) \, dt + h_3 \int_0^{S(Tu, Tu, v)} \zeta(t) \, dt
\]
\[
+ h_4 \int_0^{S(Tu, u, Tu), S(Tv, v, u))} \zeta(t) \, dt
\]
for all \(u, v \in X \) with non negative real numbers \(h_i (i \in \{1,2,3,4\}) \) satisfying \(\max\{h_1 + 3h_2 + 2h_4, h_1 + h_2 + h_3\} < 1 \). Then \(T \) has a unique fixed point \(w \in X \) and we have
\[
\lim_{n \to \infty} T^n u = w, \text{ for each } u \in X.
\]

Example 2.6 Let \(X = R \) be the complete \(S \)-metric space with \(S \)-metric space defined in example (2.3). Let us define the self mapping \(T : R \rightarrow R \) as
\[
Tu = \begin{cases}
2u + 39 & u \in (0,3) \\
90 & \text{otherwise}
\end{cases}
\]
for all \(u \in R \) and define a function \(\zeta : P \rightarrow P \) where \(P = (0, \infty) \) as \(\zeta(t) = 2t \)
\[
\int_0^\epsilon \zeta(t) \, dt = \int_0^\epsilon 2tdt = \epsilon^2 > 0 \quad \epsilon > 0.
\]

\(T \) satisfy the inequality (2.12) in theorem (2.4) for \(h_1 = h_2 = h_3 = 0, h_4 = \frac{1}{2} \) and the inequality (??) in theorem (2.7) for \(h_1 = h_1 = h_5 = 0, h_2 = \frac{1}{3} \). Hence \(T \) has a unique fixed point \(90 \). But
\(T \) does not satisfy the inequality (2.1) in theorem (2.1). Indeed, if we take \(u = 0 \) and \(v = 1 \), then we obtain
\[
\psi(\int_0^{10} 2dt) = 100 \leq F(h(\int_0^3 2dt), \varphi(\int_0^3 2dt)) \leq \psi(h(\int_0^3 2dt)) \leq 9h
\]
which is a contradiction since \(h \in (0,1) \)

Theorem 2.7 Let \((X,S)\) be a complete \(S\)-metric space \(\psi : [0,\infty) \to [0,\infty) \) is an altering distance function, \(\varphi \in \Phi_u \) and \(F \in \mathcal{C} \), the function \(\zeta : P \to P \) be defined as for each \(\varepsilon \in [0, \int_0^\varepsilon \zeta(t)dt] \) and \(T : X \to X \) be a self-mapping of \(X \) such that

\[
\begin{align*}
S(Tu, Tu, Tv) & \leq F(Uu, Vv) + \psi(\int_0^3 2dt) + \varphi(\int_0^3 2dt) + h_3 \\
S(Tu, Tu, u) & \leq \psi(\int_0^3 2dt + h_1) + \varphi(\int_0^3 2dt + h_2)
\end{align*}
\]

\[
\begin{align*}
\max \{S(u, u, v), S(Tu, Tu, u), S(Tu, Tu, v), S(Tv, Tv, u), S(Tv, Tv, v), S(Tv, Tu, v), S(Tv,Tv,v), S(Tv, Tu, v), S(Tv, Tv, v), S(Tv, Tv, v)\}
\end{align*}
\]

\[
\varphi(h_1) + \psi(\int_0^3 2dt + h_2) + \varphi(\int_0^3 2dt + h_3) + \psi(\int_0^3 2dt + h_4)
\]

\[
\max \{S(u, u, v), S(Tu, Tu, u), S(Tu, Tu, v), S(Tv, Tv, u), S(Tv, Tv, v), S(Tv, Tu, v), S(Tv, Tv, v)\}
\]

for all \(u, v \in X \) with non negative real numbers \(h_i (i \in \{1, 2, 3, 4, 5, 6\}) \) satisfying \(h_1 + h_2 + 3h_4 + h_5 + h_6 + h_7 + h_8 + h_9 = 1 \). Then \(T \) has a unique fixed point \(w \in X \) and we have \(\lim_{n \to \infty} T^n u = w \), for each \(u \in X \).

Proof. Let \(u_0 \in X \) and the sequence \(\{u_n\} \) be defined as \(\lim_{n \to \infty} T^n u_0 = u_n \). Suppose that \(u_n \neq u_{n+1} \) for all \(n \). Using the inequality (2.12), the condition (S2) and Lemma 1.3 we get
\[\psi(\int_0^{u_{n+1}} \zeta(t) \, dt) = \psi(\int_0^{u_{n-1}} \zeta(t) \, dt) \]

\[\leq F(\psi(h_1 + h_2) + \psi(h_4) + \psi(h_5) + \psi(h_6)) \]

\[+ h_4 \int_0^{u_{n-1}} \zeta(t) \, dt + h_5 \int_0^{u_{n-1}} \zeta(t) \, dt + h_6 \int_0^{u_{n-1}} \zeta(t) \, dt \]

\[\max \{ S(u_{n-1}^{1/n-1} \cdot u_{n+1}/u_{n-1} \cdot u_{n+1}/u_{n-1}) \cdot S(u_{n-1}^{1/n} \cdot u_{n+1}/u_{n-1} \cdot u_{n+1}/u_{n-1}) \cdot S(u_{n-1}^{1/n+1} \cdot u_{n+1}/u_{n-1} \cdot u_{n+1}/u_{n-1}) \} \]

which implies

\[\int_0^{u_{n+1}} \zeta(t) \, dt \leq \frac{h_1 + h_2 + h_4 + h_6}{1 - 2h_4 - h_5 - 2h_6} \int_0^{u_{n-1}} \zeta(t) \, dt = h \int_0^{u_{n-1}} \zeta(t) \, dt \]

(2.15)

Since \(\int_0^{u_{n+1}} \zeta(t) \, dt > 0 \), so there exists \(r \geq 0 \) such that

\[\lim_{n \to \infty} \int_0^{u_{n+1}} \zeta(t) \, dt = r. \]

If \(r > 0 \), then taking limit for \(n \to \infty \), we get \(\psi(r) \leq F(\psi(r), \phi(r)) \)

So \(\psi(r) = 0 \) or \(\phi(r) = 0 \). Thus \(r = 0 \), which is a contradiction. Thus, we conclude that \(r = 0 \), that is,

\[\lim_{n \to \infty} \int_0^{u_{n+1}} \zeta(t) \, dt = 0, \]
since for each $\varepsilon > 0$, $\int_0^\varepsilon \zeta(t)dt > 0$, implies $\lim_{n\to\infty} S(u_n, u_{n+1}) = 0$.

By the similar arguments used in the proof of Theorem (2.1), we see that the sequence \{u_n\} is Cauchy. Then there exists $w \in X$ such that $\lim_{n\to\infty} T^n u_0 = w$, since (X, S) is a complete S-metric space. From the inequality (??) we find

$$\psi(\int_0^\infty \zeta(t)dt) \leq F(\psi(h_1 \int_0^\infty \zeta(t)dt + h_2 \int_0^\infty \zeta(t)dt) + h_3 \int_0^\infty \zeta(t)dt + h_4 \int_0^\infty \zeta(t)dt + h_5 \int_0^\infty \zeta(t)dt)
\leq \psi((h_4 + h_5 + h_6) \int_0^\infty \zeta(t)dt)
\leq \psi(\int_0^\infty \zeta(t)dt)
\leq \psi(\int_0^\infty \zeta(t)dt)$$

If we take limit for $n \to \infty$, using Lemma 1.3 we get

$$\psi(\int_0^\infty \zeta(t)dt) \leq F(\psi(h_1 \int_0^\infty \zeta(t)dt + h_2 \int_0^\infty \zeta(t)dt) + h_3 \int_0^\infty \zeta(t)dt + h_4 \int_0^\infty \zeta(t)dt + h_5 \int_0^\infty \zeta(t)dt)
\leq \psi((h_4 + h_5 + h_6) \int_0^\infty \zeta(t)dt)
\leq \psi(\int_0^\infty \zeta(t)dt)
\leq \psi(\int_0^\infty \zeta(t)dt)$$

So $\psi((h_4 + h_5 + h_6) \int_0^\infty \zeta(t)dt) = 0$ or $\varphi((h_4 + h_5 + h_6) \int_0^\infty \zeta(t)dt) = 0$. Thus $S(Tw, Tw, w) = 0$, which implies that $S(Tw, Tw, w) = 0$. Thus $Tw = w$. Now we show the uniqueness of the fixed point. Let w_1 be another fixed point of T. Using the inequality (??) and Lemma 1.3, we get
\[
\psi\left(\int_{0}^{\infty} \zeta(t) dt \right) = \psi\left(\int_{0}^{\infty} \zeta(t) dt \right)
\]

\[
\leq F(\psi(h_{1} + \int_{0}^{\infty} \zeta(t) dt), \phi(h_{1} + \int_{0}^{\infty} \zeta(t) dt))
\]

\[
\leq \psi(\int_{0}^{\infty} \zeta(t) dt) \leq \psi(\int_{0}^{\infty} \zeta(t) dt)
\]

So \(\psi((h_{1} + h_{3} + h_{4} + h_{6}) \int_{0}^{\infty} \zeta(t) dt) = 0 \) or \(\phi((h_{1} + h_{3} + h_{4} + h_{6}) \int_{0}^{\infty} \zeta(t) dt) = 0 \). Then we obtain

\[
\int_{0}^{\infty} \zeta(t) dt = 0
\]

that is, \(w = w_{1} \) since \(h_{1} + h_{3} + h_{4} + h_{6} < 1 \). Consequently, \(T \) has a unique fixed point \(w \in X \).

REFERENCES

237-243

