CHROMATIC NUMBER TO THE TRANSFORMATION\((G^-^-^-^-^-) \) OF \(K_{1,n} \) AND \(K_{m,n} \)

B. Stephen John\(^1\) and S. Andrin Shahila\(^2\)
Department of Mathematics, Annai Velankanni College\(^{1,2}\), Tholayavattam, Tamilnadu.India-629157
E-mail: stephenjohn1963@gmail.com\(^1\); andrinshahila@gmail.com\(^2\)

Abstract: Let \(G = (V,E) \) be an undirected simple graph. The transformation graph \(G^-^-^-^-^- \) of \(G \) is a simple graph with vertex set \(V(G) \cup E(G) \) in which adjacency is defined as follows: (a) two elements in \(V(G) \) are adjacent if and only if they are non-adjacent in \(G \), (b) two elements in \(E(G) \) are adjacent if and only if they are non-adjacent in \(G \), and (c) an element of \(V(G) \) and an element of \(E(G) \) are adjacent if and only if they are non-incident in \(G \). In this paper, we determine the chromatic number of Transformation graph \(G^-^-^-^-^- \) for Star and Complete Bipartite graph.

Keywords: Star Graph, Complete Bipartite Graph, Chromatic Number, Transformation Graph

1. INTRODUCTION:

In this paper, we are concerned with finite, simple graph. Let \(G = (V,E) \) be a graph, if there is an edge \(e \) joining any two vertices \(u \) and \(v \) of \(G \), we say \(u \) and \(v \) are adjacent. An n-vertex colouring or an n-colouring of a graph \(G = (V,E) \) is a mapping

\[f: V \rightarrow S, \text{ where } S \text{ is a set of } n \text{-colours}. \]

Definition: 1.1

A graph \(G \) is an ordered pair \((V(G), E(G)) \) consisting of a non-empty set \(V(G) \) of vertices and a set \(E(G) \), disjoint from \(V(G) \) of edges together with an incidence function \(\psi_G \) that associates with each edge of \(G \) an unordered pair of vertices of \(G \).

Definition: 1.2

A colouring \(C \) of a simple graph \(G \) is proper if no two adjacent vertices are assigned the same colour.

A graph is properly coloured if it is coloured with the minimum possible number of colours.

Definition: 1.3

The chromatic number of a graph \(G \) is the minimum number of colours required to colour \(G \) and is denoted by \(\chi(G) \).

Definition: 1.4

The total graph \(T(G) \) of a graph \(G \) is the graph whose vertex set is \(V(G) \cup E(G) \) and two vertices are adjacent in \(T \) if and only if they are either adjacent or incident in \(G \).

Definition: 1.5

The complement \(\bar{G} \) of a graph \(G \), which has \(V(G) \) as its set of points and two points are adjacent in \(\bar{G} \) if and only if they are not adjacent in \(G \).
Definition: 1.6

A **bipartite graph** is a graph whose vertex set can be partitioned into two subsets \(V_1 \) and \(V_2 \), such that each edge has one end in \(V_1 \) and one end in \(V_2 \).

A bipartite graph is said to be complete if every vertex of \(V_1 \) is joined to every vertex of \(V_2 \). A complete bipartite graph with \(|V_1| = m \) and \(|V_2| = n \) is denoted by \(K_{m,n} \).

\(K_{1,n} \) is called as **star graph** for \(n \geq 1 \).

In [2] generalized the concept of total graphs to a transformation graph \(G^{xyz} \) with \(x, y, z; \{-, +\} \), where \(G^{+++} \) is the total graph of \(G \), and \(G^{---} \) is its complement. Also, \(G^{--+}, G^{+-+} \) and \(G^{++-} \) are the complement of \(G^{+++}, G^{+-+} \) and \(G^{++-} \) respectively.

Here we investigate the transformation graph \(G^{---} \) of some graphs.

Lemma: 1.1 For any complete graph \(K_n \), \(\chi(K_n) = n \).

Lemma: 1.2 The chromatic number of \(\overline{K_n} \) is 1 and \(\chi(K_{m,n}) = 2 \).

Theorem: 2.1

Let \(G \) be a star graph with \(n + 1 \) vertices, that is \(G = K_{1,n} \), then the chromatic number of \(G^{---} \) is \(n \), that is \(\chi(G^{---}) = n \).

Proof:

The proof of this theorem is on induction.

If \(n = 1 \), \(G = K_{1,1} \) and \(G^{---} \) are represented in figure.1 as below.

Now, \(G^{---} \) is a null graph with three vertices.

By lemma: 1.2, \(\chi(G^{---}) = 1 \).

Therefore, the result is true form \(n = 1 \).

If \(n = 2 \), \(G = K_{1,2} \) is represented in figure.2 as below.

The transformation of \(G \), that is \(G^{---} \) is represented in figure.3.
Let $V(G^{---})$ be the vertex set of G^{---}, $V(G^{---}) = \{u, v_1, v_2, e_1, e_2\}$. Now divide the vertex set into two sets V_1 and V_2 such that $V_1 = \{v_1, v_2\}$ and $V_2 = \{u, e_1, e_2\}$.

Clearly, the induced subgraph formed by the vertices of V_1 is a complete subgraph K_2 in G^{---}. Hence, we need $|V_1|$ colours to colour the vertices of V_1. Let it be c_1 and c_2. Also, the subgraph formed by the vertices of V_2 is an independent set in G^{---} and u is an isolated vertex. The vertex e_i is non-adjacent to v_i for all $(i = 1, 2)$, so we can give the colour c_1 to the vertex e_1 which was assigned to the vertex v_1 and the colour c_2 can be given to the vertex e_2 which was assigned to the vertex v_2. Hence, the connected subgraph of G^{---} can be coloured by the colours c_1, c_2. Since, u is an isolated vertex of G^{---}, we can colour u either by c_1 or c_2. Therefore, $\chi(K_{1,2}^{---}) = 2$.

Hence, the result is true for $n = 2$.

Assume the result is true for $n - 1$, that is $\chi(K_{1,n-1}^{---}) = n - 1$ and to prove $\chi(K_{1,n}^{---}) = n$.

The graph $G = K_{1,n}$ is represented in figure 4 as below.

![Figure 4(G)](image)

The transformation G^{---} is represented in figure 5.

Let $V(G^{---}) = \{v_i, u_i, e_i/i\}$ set of G^{---}. Divide the vertex set into two sets V_1 and V_2 such that $V_1 = \{v_i/i = 1, 2, \ldots, (n-1)\}$ and $V_2 = \{u, e_i/i = 1, 2, \ldots, (n-1)\}$.

Clearly, the induced subgraph formed by the vertices of V_1 is a complete subgraph K_{n-1} of G^{---}. Hence, we need $|V_1|$ colours to colour the vertices of V_1. Let it be $c_1, c_2, \ldots, c_{n-1}$. The subgraph formed by the vertices of V_2 is an independent set in G^{---} and u is an isolated vertex. Also, the vertex e_i is non-adjacent to v_i for all $i = 1, 2, \ldots, (n-1)$. Hence the connected subgraph of G^{---} is coloured by $(n-1)$-
colours say \(c_i (i=1,2,\ldots,(n-1)) \). Since \(u \) is an isolated vertex of \(G^{---} \), we can colour \(u \) by any one colour of \(c_i (i=1,2,\ldots,(n-1)) \). Now the vertices \(v_n \) and \(e_n \) which are adjacent with all other vertices except \(u \), also \(v_n \) and \(e_n \) are non-adjacent.

Therefore, \(V_1 \cup \{v_n\} \) form a complete subgraph with \(n \)-vertices. Since the vertices of \(V_1 \) is coloured by \(\{c_i (i=1,2,\ldots,(n-1))\} \) colours. (By induction), so we need another colour \(c_n \) to colour the vertices \(v_n \) and \(e_n \). Hence, \(\chi(G^{---}) = n \).

Theorem: 2.2

Let \(G \) be any complete bipartite graph with \((n + m) \) vertices, that is \(G = K_{m,n} \). Then the chromatic number of \(G^{---} \) is \(n + m - 1 \), that is \(\chi(G^{---}) = n + m - 1 \).

Proof:

\[
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure7}
\caption{\(G = K_{m,n} \)}
\end{figure}

\[
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure8}
\caption{\(G = K_{m,n}^{---} \)}
\end{figure}

Let \(G = K_{m,n} \) and the vertex set of \(G \) is \(V(G) = \{v_i, u_j / i = 1,2,\ldots,m; j = 1,2,\ldots,n \} \)

Let \(V_1 = \{v_1, v_2,\ldots,v_m\} \) and \(V_2 = \{u_1, u_2,\ldots,u_n\} \) be the vertex set and \(e_{1,1}, e_{1,2},\ldots,e_{m,n} \) are the edges of \(G \).

Therefore, \(V(G^{---}) = \{v_i, u_j, e_{i,j} / i = 1,2,\ldots,m; j = 1,2,\ldots,n \} \).

Let \(c_i (i=1,2,\ldots) \) be the required colours to colour the vertices of \(G^{---} \).
Choose the vertex v_1 and it is coloured by the colour c_1. Clearly the vertices $e_{1,j}$ are non-adjacent with v_1, so we can use the colour c_1 to the vertex $e_{1,j}$. But the vertices $\{v_i/(i=2,3,..,m)\}$ which are adjacent to v_1 and the vertices $u_j’s$ are independent with the respective $\{e_{1,j}; (j=1,2,..,n)\}$, so the vertices $\{e_{1,j}; (j=1,2,..,n)\}$ can be coloured by the existing colour c_1. Since each vertex $\{e_{1,j}; (j=1,2,..,n)\}$ is adjacent with v_2, we use another new colour c_2 to the vertices v_2 and $\{e_{2,j}; (j=1,2,..,n)\}$.

Also, the vertices $\{v_i; i=3,4,..,m\}$ which are adjacent to both v_1 and v_2 and the vertices $u_j’s$ are independent with the respective $\{e_{2,j}; (j=1,2,..,n)\}$, so the vertices $\{e_{2,j}; (j=1,2,..,n)\}$ can be coloured by the existing colour c_2. Since each vertex $\{e_{2,j}; (j=1,2,..,n)\}$ is adjacent with v_3, we use another new colour c_3 to the vertices v_3 and $\{e_{3,j}; (j=1,2,..,n)\}$.

Repeat the above process until we have to colour the vertices v_{m-1} and $\{e_{m-1,j}; (j=1,2,..,n)\}$. We need $(m-1)$ –colours to colour the vertex set

$$\{v_i, e_{i,j} / i = 1,2, \ldots, m; j = 1,2, \ldots, n\}.$$

(1)

Now, the vertex v_m is non-adjacent with the vertices u_j and $\{e_{m,j}; (j=1,2,..,n)\}$ which is an induced subgraph of the form $K_{1,n}^{---}$ and the existing $(m-1)$-colours cannot be given to the induced subgraph $K_{1,n}^{---}$ of G^{---}, so we need another new n-colours to colour the vertices of $K_{1,n}^{---} \{v_m, e_{m,j}, u_j\}$ for all $j = 1,2, \ldots, n$.

(2)

From (1) and (2)

We need $(m + n - 1)$-colours to colour G^{---}.

Therefore, $\chi(G^{---}) = m + n - 1$.

Hence the proof.

REFERENCES:

