ON PAIRS OF DISJOINT DOMINATING SETS IN THE COMPOSITION OF GRAPHS

Edward M. Kiunisala
Mathematics Department
College of Arts and Sciences
Cebu Normal University
Cebu City, Philippines

Abstract: In this paper, we investigate pairs of disjoint dominating sets A and B in the composition of graph, where B is either an independent or a total dominating set in the composition of graph.

Subject Classification: 05C69

Keywords: dominating set, independent dominating set, total dominating set, pair of disjoint dominating sets

1 INTRODUCTION

Throughout this study, we only consider graphs which are finite, simple and undirected. The symbols $V(G)$ denotes the vertex set and $E(G)$ denotes the edge set of G. The order of G refers to the cardinality of $V(G)$ and the size of G refers to the cardinality of $E(G)$. The symbol $|V(G)|$ denotes the order of G and $|E(G)|$ denotes the size of G. If $|E(G)| = 0$, then G is an empty graph. An empty graph of order n is denoted by K_n. If $V(G)$ is singleton, G is called a trivial graph.

The composition $G[H]$ of G and H is the graph with $V(G[H]) = V(G) \times V(H)$ and $(u, v)(u', v') \in E(G[H])$ if and only either $uu' \in E(G)$ or $v = u'$ and $vv' \in E(H)$. For any $v \in V(G)$, $G - v$ is the resulting graph after removing from G the vertex v and all edges of G incident to v.

Two distinct vertices u and v of G are neighbors in G if $uv \in E(G)$. The closed neighborhood $N_c[v]$ of a vertex v of G is the set consisting of v and every neighbor of v in G. A dominating set in G is any $S \subseteq V(G)$ for which $N_c[S] = V(G)$. The minimum cardinality of a dominating set is called the domination number of G, denoted by $\gamma(G)$. Any dominating set in G of cardinality $\gamma(G)$ is referred to as a γ-set in G. A dominating set S in G is an independent dominating set if $uv \notin E(G)$ for all $u, v \in S$. The minimum cardinality of an independent dominating set in G is called the independence domination number of G, denoted by $\gamma'_I(G)$. Any independent dominating set in G of cardinality $\gamma'_I(G)$ is referred to as a γ_I-set in G. A total dominating set S if for each $v \in S$ there is $v' \in S$ such that $uv \in E(G)$. The minimum cardinality of a total dominating set is called the total domination number of G, denoted by $\gamma_t(G)$. Any total dominating set in G of cardinality $\gamma_t(G)$ is referred to as a γ_t-set in G. The symbols $D(G), \mathcal{J}(G)$ and $T(G)$ are used to denote the collection of all dominating sets, the collection of all independent dominating sets, and the collection of all total dominating sets in G, respectively. The reader may refer to [1, 3, 5, 6, 7, 8, 10, 11, 24, 25] for the fundamental concepts of domination theory, and to [3, 12, 25] for its applications.

Domination is one of the most well-studied concepts in graph theory (see [11]). The reader is referred to [1, 3, 5, 6, 7, 8, 10, 11, 24, 25] for the fundamental concepts and recent developments of the domination theory, and to [3, 12, 15, 25] for its various applications.

In 1962, O. Ore gave the classical result which can be stated as follows: If a graph G has no isolated vertices and S is a minimum dominating set, then $V(G) \setminus S$ is a dominating set in G. It has motivated the introduction of the concept of inverse domination (by V.R. Kulli and S.C. Sigarkanti [21]) as well as the concept of disjoint domination (by S.M. Hedetniemi, S.T. Hedetniemi, R.C. Laskar, L. Markus, and P.J. Slater [14]). A subset $S \subseteq V(G)$ is an inversedominating set in G if S is a dominating set in G and there is a minimum dominating set D in G such that $S \cap D = \emptyset$. The minimum cardinality of an inverse dominating set in G is the inverse domination number of G, which is denoted by $\gamma^*(G)$. A pair (S, D) of dominating sets in G is a dd-pair if $S \cap D = \emptyset$. We denote by $\mathcal{D}_D(G)$ the collection of all dd-pairs in G. The minimum sum $|S| + |D|$ among all dd-pairs (S, D) in G is the disjoint domination number of G, which is denoted by $\gamma_D(G)$. That is,
\[\gamma\gamma(G) = \min\{|S| + |D|: (S, D) \in \mathcal{D}(G)\}. \]

A dd-pair \((S, D)\) with \(|S| + |D| = \gamma\gamma(G)\) is called a \(\gamma\gamma\)-pair.

Inverse domination is studied further in [9, 19, 22]. Disjoint domination is also further investigated in [13, 15, 16, 20, 23].

2 COMPOSITION OF GRAPHS

For any connected graphs \(G\) and \(H\), if \(S \subseteq V(G[H])\) is a \(\gamma\)-set in \(G[H]\), then \(S\) is a \(\gamma\)-set in \(G\). Consequently, \(\gamma(G) \leq \gamma(G[H])\).

Theorem 2.1 [6] Let \(G\) and \(H\) be connected graphs. Then \(C = U_{x \in S} \{x\} \times T_x \subseteq V(G[H])\), where \(S \subseteq V(G)\) and \(T_x \subseteq V(H)\) for every \(x \in S\), is an dominating set in \(G[H]\) if and only if either

(i) \(S\) is a total dominating set in \(G\) or

(ii) \(S\) is a dominating set in \(G\) and \(T_x\) is a dominating set in \(H\) for every \(x \in S\).

Corollary 2.3 Let \(G\) and \(H\) be connected graphs. A subset \(C = U_{x \in S} \{x\} \times T_x \subseteq V(G[H])\), is a \(\gamma_i\)-set in \(G[H]\) if and only if \(S\) is a \(\gamma_i\)-set in \(G\) and \(T_x\) is a dominating set in \(H\) for every \(x \in S\).

Proof : Suppose that \(C = U_{x \in S} \{x\} \times T_x\) is a \(\gamma_i\)-set in \(G[H]\). By Theorem 2.2, \(S\) is an independent dominating set in \(G\) and \(T_x\) is an independent dominating set in \(H\) for each \(x \in S\). Suppose that \(S^*\) is a \(\gamma_i\)-set in \(G\), and let \(D \subseteq V(H)\) be a \(\gamma_i\)-set in \(H\). Define \(C^* = U_{x \in S^*} \{x\} \times D\). By Theorem 2.2, \(C^*\) is an independent dominating set in \(G[H]\). Since \(C^*\) is a \(\gamma_i\)-set in \(G[H]\), \(|C| \leq |C^*|\). On the other hand, \(|C| = |S^*||D| \leq |S||D| \leq |C|\). Thus, \(|C| = |C^*|\), and consequently, \(|S| = |S^*|\) and \(|D| = |T_x|\) for all \(x \in S\). This means that \(S\) is a \(\gamma_i\)-set in \(G\) and \(T_x\) is a \(\gamma_i\)-set in \(H\) for every \(x \in S\).

Similar arguments will prove the converse.

Lemma 2.4 Let \(G\) and \(H\) be connected nontrivial graphs such that \(V(H)\) is dominated in \(H\) by a vertex \(v \in V(H)\). If \(A \subseteq V(G)\) is an inverse independent dominating set in \(G\), then \(A \times \{v\}\) is an inverse independent dominating set in \(G[H]\).

Proof : Let \(B \subseteq V(G)\) be a \(\gamma_i\)-set in \(G\) and \(A \subseteq V(G) \setminus B\) a dominating set in \(G\). By Corollary 2.3, \(B \times \{v\}\) is a \(\gamma_i\)-set in \(G[H]\). Also, by Theorem 2.1, \(A \times \{v\}\) is a dominating set in \(G[H]\). Since \((A \times \{v\}) \cap (B \times \{v\}) = \emptyset\), \(A \times \{v\}\) is an independent inverse dominating set in \(G[H]\).

Corollary 2.5 Let \(G\) and \(H\) be connected nontrivial graphs with \(\gamma(H) = 1\). Then

\[\gamma(G) \leq \gamma_i(G[H]) \leq \gamma_i(G). \]

Define \(S^* = S \setminus N_G(S)\) for any \(S \subseteq V(G)\).

Theorem 2.6 Let \(G\) and \(H\) be nontrivial connected graphs with \(\gamma(H) = 1\).

(i) If \(H\) has (at least) two distinct vertices each of which dominates \(V(H)\), then \(\gamma_i(G[H]) = \gamma(G)\).

(ii) If \(H\) has a unique vertex that dominates \(V(H)\), then...
\[y_i'(G[H]) = \min(|A| + |A' \cap B| (y'(H) - 1) : A \in D(G), B \in J(G) \]

with \(y_i(G) = |B| \).

Proof: (i) Suppose that \(H \) has two distinct vertices \(u \) and \(v \) such that \(N[u] = V(H) = N[v] \), and let \(A, B \subseteq V(G) \) be a \(y_i \)-set and a \(y_i \)-set, respectively, in \(G \). Then \(S = A \times \{u\} \cup B \times \{v\} \) is a \(y_i \)-set and a \(y_i \)-set, respectively, in \(G[H] \). Since \(S \cap D = \emptyset \), \(S \) is a \(y_i \)-set in \(G[H] \). Hence, \(y_i'(G[H]) \leq |S| = |A| = y(G) \). The desired equality follows from Inequality 1.

Suppose that \(H \) has a unique vertex \(v \) that dominates \(V(H) \), and let

\[\alpha = \min(|A| + |A' \cap B| (y'(H) - 1) : A \in D(G), B \in J(G) with y_i(G) = |B|). \]

Let \(A \) and \(B \) be a dominating set and \(y_i \)-set, respectively, in \(G \), and let \(v \in V(H) \) such that \(N[v] = V(H) \). Choose \(w \in V(H) \setminus \{v\} \) and a \(y \)-set \(C \subseteq V(H) \) in \(H \). Since \(H \) has a unique dominating set, namely \(\{v\}, v \notin C \).

Define \(D = B \times \{v\} \) and

\[S = (\cup_{u \in A \setminus B} \{(u,v)\}) \cup (\cup_{u \in (A \setminus A') \cap B} \{(u,v)\}) \cup (\cup_{u \in A' \cap B} \{(u,x \times C)\}). \]

By Corollary 2.3, \(D \) is a \(y_i \)-set in \(G[H] \). Let \(u \in A' \). Then \(T_u = \{x \in V(H) : (u,v) \in S\} \) is either \(C \) or \(\{v\} \). In any case, \(T_u \) is a dominating set in \(H \). By Theorem 2.1, \(S \) is a dominating set in \(G[H] \). Since \(S \cap D = \emptyset \), \(S \) is an inverseindependent dominating set in \(G[H] \). Thus,

\[y_i'(G[H]) \leq |S| = |A| + |A' \cap B| (y'(H) - 1). \]

Since \(A \) and \(B \) are arbitrary, \(y_i'(G[H]) \leq \alpha \).

Let \((S,D) \) be a \(y_i \)-pair in \(G[H] \) such that \(|D| = y_i(G[H]) \) and \(|S| = y_i'(G[H]) \). By Theorem 2.1, \(S = \cup_{u \in A} \{(u) \times T_u\} \) and \(D = \cup_{u \in B} \{(u) \times T_u\} \) for some dominating sets \(A \) and \(B \) in \(G \). More particularly, by Corollary 2.3, \(B \) is a \(y_i \)-set in \(G \). Since \(y(H) = 1 \), Corollary 2.7 implies that \(|T_u| = 1 \) for all \(u \in B \) and \(|D| = |B| = y_i(G) \). Since \(S \) is a \(y_i \)-set, \(|T_u| = 1 \) for all \(u \in A \setminus B \), in which case, we may assume that \(T_u = \{v\} \subseteq V(H) \) where \(N[v] = V(H) \). Since \(S \cap D = \emptyset \), for all \(u \in A' \cap B \), if \((u,w) \in D \), then \((u,w) \notin S \). Moreover, in view of Theorem 2.1(ii), for each such \(u \), \(T_u = \{x \in V(H) : (u,x) \in S\} \) is a \(y_i \)-set in \(H \). Thus,

\[|S| = |\cup_{u \in A \setminus B} \{(u) \times T_u\}| + |\cup_{u \in (A \setminus A') \cap B} \{(u) \times T_u\}| + |\cup_{u \in A' \cap B} \{(u) \times T_u\}| \]

\[\geq |A \setminus (A' \cap B)| + |A' \cap B| (y'(H)) \]

\[= |A| + |A' \cap B| (y'(H) - 1) \]

So that \(y_i'(G[H]) \geq \alpha \).

Corollary 2.7 Let \(G \) and \(H \) be connected nontrivial graphs. Suppose that \(H \) has a unique vertex that dominates \(V(H) \). Then

(i) \(y_i'(G[H]) = y_i'(G) \) if and only if \(G \) has a \(y_i \)-set \(A_0 \) such that

\[|A_0| \leq |A \cap B| (y'(H) - 1) + |A| \]

for all dominating sets \(A \) and \(y_i \)-sets \(B \) in \(G \).

(ii) If \(y_i'(G) = y(G) \), then \(y_i'(G[H]) = y(G) \).

Proof: (i) Let \(A_0 \subseteq V(G) \) be a \(y_i \)-set in \(G \) such that \(|A_0| \leq |A \cap B| (y'(H) - 1) + |A| \) for all dominating sets \(A \) and \(y_i \)-sets \(B \) in \(G \). By Theorem 2.6 and Inequality 1 in Corollary 2.5, \(y_i'(G[H]) = |A_0| \leq y_i'(G[H]) \leq y_i'(G) \). The converse is clear.

(ii) Let \(B \subseteq V(G) \) be a \(y_i \)-set in \(G \). Put \(A = B \). Since \(A' = \emptyset \) and \(y(G) = |A| = |A| + |A' \cap B| (y'(H) - 1), \) Theorem 2.6 implies \(y_i'(G[H]) \leq |A| = y(G) \). The desired equality follows from Inequality 1 in Corollary 2.5.
Theorem 2.8 Let G and H be connected nontrivial graphs with $\gamma(H) = 1$. Then

$$2\gamma(G) \leq \gamma\gamma_t(G[H]) \leq \gamma\gamma_t(G). \ (2)$$

More precisely,

(i) if H has (at least) two distinct vertices each of which dominates $V(H)$, then $\gamma\gamma_t(G[H]) = 2\gamma(G)$; and

(ii) if H has a unique vertex that dominates $V(H)$, then

$$\gamma\gamma_t(G[H]) = \min\{|A| + |B| + |A^° \cap B|(\gamma'(H) - 1): A \in \mathcal{D}(G), B \in \mathcal{I}(G)\}.$$

Proof: There exists $v \in V(H)$ such that $N_H[v] = V(H)$. Let (A, B) be a $\gamma\gamma_t$-pair in G. Then $(A \times \{v\}, B \times \{v\})$ is a d_i-pair in $G[H]$. Thus, $\gamma\gamma_t(G[H]) \leq |A \times \{v\}| + |B \times \{v\}| = |A| + |B| = \gamma\gamma_t(G)$.

If H has two distinct vertices that both dominate $V(H)$, then Theorem 2.6(i) implies

$$2\gamma(G) \leq \gamma\gamma_t(G[H]) \leq \gamma(G[H]) + \gamma'(G[H]) = 2\gamma(G).$$

Suppose that H has a unique vertex v that dominates $V(H)$. Let

$$\alpha = \min\{|A| + |B| + |A^° \cap B|(\gamma'(H) - 1): A \in \mathcal{D}(G), B \in \mathcal{I}(G)\}.$$

Let $w \in V(H) \setminus \{v\}$, (X, Y) a d_i-pair in H, and let A and B be a dominating set and an independent dominating set, respectively, in G. Define

$$S = (U_{u \in A \setminus B} \{(u, v)\}) \cup (U_{u \in (A^\circ \cap B)} \{(u, w)\}) \cup (U_{u \in A^\circ \setminus B} \{(u) \times X\}),$$

and $D = (U_{u \in A^\circ \setminus B} \{(u) \times Y\}) \cup (U_{u \in B \setminus (A^\circ \cap B)} \{(u, v)\})$. By Theorem 2.1, S is a dominating set in $G[H]$. By Theorem 2.2, D is an independent dominating set in G. Moreover, $S \cap D = \emptyset$. Thus,

$$\gamma\gamma_t(G[H]) \leq |S| + |D| = |A| + |B| + |A^\circ \cap B|(|X| + |Y| - 2).$$

Since X and Y are arbitrary $\gamma\gamma_t(G[H]) \leq |A| + |B| + |A^\circ \cap B|\gamma'(H) - 2).$

Write $H = K_1 + H^*$, where $\gamma(H^*) \geq 2$. So, $(\gamma\gamma_t(H) - 2) = \gamma'(H) - 1$.

Thus,

$$\gamma\gamma_t(G[H]) \leq |A| + |B| + |A^\circ \cap B|\gamma'(H) - 1)$$

Since A and B are arbitrary, $\gamma\gamma_t(G[H]) \leq \alpha$.

To prove the converse, let (S, D) be a $\gamma\gamma_t$-pair in $G[H]$. There exists an adominating set A in G and an independent dominating set B in G such that $S = U_{u \in A} \{(u) \times T_u\}$ and $D = U_{v \in B} \{(u) \times T_v\}$. If A is not a total dominating set in G, then T_u is a dominating set in H. Also, T_u is an independent dominating set in H for all $u \in B$. In particular, for each $u \in A \cap B, X = \{y \in V(H): (u, y) \in S\}$ and $Y = \{y \in V(H): (u, y) \in D\}$ constitute a d_i-pair in H. Since (S, D) is a $\gamma\gamma_t$-pair in $G[H]$, we have for each $u \in A \cap B, |X| + |Y| \geq \gamma\gamma_t(H)$. For each $u \in (A \setminus A^\circ) \cap B, \{y \in V(H): (u, y) \in D\} = \{v\}$, and for each $u \in B \setminus A, \{y \in V(H): (u, y) \in D\} = \{v\}$. Thus,

$$\gamma\gamma_t(G[H]) = |S| + |D| \geq |A| + |B| + |A^\circ \cap B|\gamma'(H) - 2) \geq \alpha.$$

This proves Statement (ii). ■

Corollary 2.9 Let G and H be connected nontrivial graphs. Suppose that H has a unique vertex that dominates $V(H)$. Then
\((i) \gamma \gamma_i (G[H]) = \gamma \gamma_i (G) \) if and only if \(G \) has an \(\gamma \gamma_i \)-pair \((A_0, B_0)\) such that \(|A_0| + |B_0| \leq |A| + |B| + |A^c \cap B| (\gamma'(H) - 1)\) for all dominating sets \(A \) in \(G \) and independent dominating sets \(B \) in \(G \).

\((ii) \) If \(\gamma_i (G) = \gamma (G) \), then \(\gamma \gamma_i (G[H]) = 2 \gamma (G) \).

Example 2.10 Let \(G \) be any connected nontrivial graph. Then

\[(i) \gamma_i (G[K_{1,n}]) = \min \{|A| + (n-1)|A^c \cap B|: A \in \mathcal{D}(G), B \in \mathcal{J}(G)\}, |B| = \gamma_i (G) \] and

\[(ii) \gamma_i (G[K_p]) = \gamma (G) \text{ and } \gamma \gamma_i (G[K_p]) = 2 \gamma (G) \text{ for } p \geq 2.\]

Proposition 2.11 For noncomplete connected graphs \(G \) and \(p \geq 2 \),

\[
\gamma_i (K_p [G]) = \begin{cases} 1, & \text{if } \gamma (G) = 1, \\ 2, & \text{otherwise.} \end{cases}
\]

Proof: If \(\gamma (G) = 1 \), then \(\gamma_i (K_p [G]) = \gamma (K_p) = 1 \), by Theorem 2.6(i) and Corollary 2.9(ii). Suppose that \(\gamma (G) \geq 2 \). Then \(\gamma (K_p [G]) \geq 2 \) and, hence, \(\gamma_i (K_p [G]) \geq 2 \). Let \(D \subseteq V(K_p [G]) \) be a \(\gamma_i \)-set in \(K_p [G] \). By Corollary 2.3, \(D = \bigcup_{i \in A} \{ (u, v) \} \) for some \(\gamma_i \)-set \(A \) in \(G \) and \(u \in V(K_p) \). Since \(G \) is nontrivial, \(V(G) \backslash A \neq \emptyset \). Let \(y \in V(G) \backslash A \) and put \(S = \{ (u, y), (x, y) \} \), where \(u \) and \(x \) are distinct vertices of \(K_p \). Since \(S \) is a dominating set in \(K_p [G] \) and \(S \cap D = \emptyset \), \(S \) is an inverse independent dominating set in \(K_p [G] \). Thus \(\gamma_i (K_p [G]) = 2 \).

Corollary 2.12 For noncomplete connected graphs \(G \) and \(p \geq 2 \),

\[
\gamma \gamma_i (K_p [G]) = \begin{cases} 2, & \text{if } \gamma (G) = 1, \\ 4, & \text{otherwise.} \end{cases}
\]

Proof: If \(\gamma (G) = 1 \), then Inequality 2 yields \(\gamma \gamma_i (K_p [G]) = 2 \). Suppose that \(\gamma (G) \geq 2 \). Then \(2 \leq \gamma \gamma_i (K_p [G]) \leq 4 \).

\(\gamma \gamma_i (K_p [G]) = 3 \), then \(\gamma (G) = 1 \), a contradiction. Thus, \(\gamma \gamma_i (K_p [G]) = 4 \).

Theorem 2.13 [6] Let \(G \) and \(H \) be connected graphs. Then \(\mathcal{C} = \bigcup_{xy \in S} \{ \{ x \} \times T_x \} \subseteq V(G[H]), \) where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \), is a total dominating set in \(G[H] \) if and only if

\((i) \) \(S \) is a total dominating set in \(G \) or

\((ii) \) \(S \) is a dominating set in \(G \) and \(T_x \) is a total dominating set in \(H \) for every \(x \in S \backslash \mathcal{N}_G (S) \).

Theorem 2.14 Let \(G \) and \(H \) be connected nontrivial graphs and \(\gamma (H) = 1 \). Then

\((i) \) if \(H \) has (at least) two distinct vertices each of which dominates \(V(H) \), then \(\gamma \gamma_i (G[H]) = \gamma (G) + \gamma_i (G); \)

\((ii) \) if \(H \) has a unique vertex that dominates \(V(H) \), then

\[
\gamma \gamma_i (G[H]) = \min \{|A| + |B|: A \in \mathcal{D}(G), B \in \mathcal{J}(G)\}.
\]

Proof: (i) Suppose that \(H \) has distinct vertices \(u \) and \(v \) such that \(\mathcal{N}_H [u] = V(H) \backslash \mathcal{N}_H [v] \). Let \(S, S' \subseteq V(G) \) be a \(\gamma \)-set and a \(\gamma_i \)-set in \(G \). Define \(D = S \backslash \{ u \} \) and \(T = S' \backslash \{ v \} \). Then \((S, T) \) is a \(dt \)-pair in \(G[H] \). Thus,

\[
\gamma (G) + \gamma_i (G) = \gamma (G[H]) + \gamma_i (G[H]) \leq \gamma \gamma_i (G[H]) \leq |D| + |T| = \gamma (G) + \gamma_i (G),
\]

and \(\gamma (G) + \gamma_i (G) = \gamma (G) + \gamma_i (G) \).
(ii) Define \(\alpha = \min\{|A| + |B|: A \in \mathcal{D}(G), B \in \mathcal{T}(G)\} \). Let \(A \in \mathcal{D}(G) \) and \(B \in \mathcal{T}(G) \). Let \(v \in V(H) \) be such that \(N_H[v] = V(H) \) and \(w \in V(H) \setminus \{v\} \). Then \((D; T) \), where \(D = A \times \{v\} \) and \(T = B \times \{w\} \), is a \(dt \)-pair in \(G[H] \). This means that \(\gamma(G[H]) \leq |D| + |T| = |A| + |B| \). Since \(A \) and \(B \) are arbitrary, \(\gamma(G[H]) \leq \alpha \).

Let \((D; T) \) be a \(\gamma', \gamma \)-pair in \(G[H] \). Then \(D = \bigcup_{v \in E} \{(u) \times T_u\} \) and \(T = \bigcup_{u \in B} \{(u) \times T_u\} \) for some dominating sets \(A \) and \(B \) in \(G \) and \(T_u \subseteq V(H) \). Moreover, by Theorem 2.1, if \(A \) is not a total dominating set in \(G \), then \(T_u \) is a dominating set for all \(u \in A^+ \). Also, by Theorem 2.13, if \(B \) is not a total dominating set in \(G \), then \(T_u \) is a total dominating set in \(H \) for all \(u \in B^+ \). If \(B \) is a total dominating set in \(G \), then

\[|D| + |T| \geq |A| + |B| \geq \alpha. \]

Suppose that \(B \) is not a total dominating set in \(G \). For each \(u \in B^+ \), if \(T_u = \{v \in V(H): (u, v) \in T\} \), then \(|T_u| \geq 2 \) so that

\[|\bigcup_{u \in B^+} \{(u) \times T_u\}| \geq 2|B^+. \]

For each \(u \in B^+ \), choose \(v(u) \in V(G) \) such that \(uv(u) \in E(G) \). Define \(C = (B \setminus B^+) \cup B^+ \cup \{v(u): u \in B^+\} \). Then \(C \) is a total dominating set in \(G \) and

\[|D| + |T| \geq |A| + |C| \geq \alpha. \]

This completely proves the Statement (ii) of the theorem.

3. REFERENCES