ON g*α-I-CONTINUOUS IN TOPOLOGICAL SPACES

K. Indirani, V. Rajendran, P. Sathishmohan and L. Chinnapparaj

1 Department of Mathematics, Nirmala College for Woman, Coimbatore, TN, India.
2, 3, 4 Department of Mathematics, KSG college, Coimbatore, TN, India.

E-mail: iiscsathish@yahoo.co.in

Abstract: In this paper we introduce and study the notions of g*α-I-closed sets and g*α-I-continuity in Ideal topological spaces.

Keywords: g*α-I-closed, g*α-I-open and g*α-I-continuous, g*α-I-irresolute.

1. Introduction and Preliminaries

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties. (1) A ∈ I and B ⊆ A implies B ∈ I, (2) A ∈ I and B ∈ I implies A ∪ B ∈ I. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I). For a subset A ⊆ X, A*(I, τ)={x ∈ X : A ∩ U ∉ I for every U ∈ τ (X,x)} is called the local function of A with respect to I and τ [4]. We simply write A* in case there is no chance for confusion.

A Kuratowski closure operator cl*(.) for a topology τ*(I, τ) called the *-topology, finer than τ is defined by cl*(A) = A ∪ A* [12]. If A ⊆ X, cl(A) and int(A) will respectively, denote the closure and interior of A in (X, τ).

Definition 1.1. A subset A of a topological space (x, τ) is
1. α-closed [8] if cl (int(cl(A))) ⊆ A.
2. regular closed [10], if A = cl(int(A))
3. αg closed [7], if αcl(A) ⊆ U whenever A ⊆ U and U is open in (x, τ).
4. gα-closed [7], if αcl(A) ⊆ U whenever A ⊆ U and U is α-open in (x, τ).
5. wgα-closed [11], if αcl(int(A)) ⊆ U whenever A ⊆ U and U is α-open in (x, τ).
6. wgα-closed [11], if αcl(int(A)) ⊆ U whenever A ⊆ U and U is open in (x, τ).
7. Semi closed [6], if int(cl(A)) ⊆ A.
8. g-closed [6], if cl(A) ⊆ U whenever A ⊆ U and U is open.
9. gs-closed [1], if αcl(A) ⊆ U whenever A ⊆ U and U is open.
10. αg – closed [14], if αcl(A) ⊆ U whenever A ⊆ U and U is regular open.
11. gpr-closed [3], if pcl(A) ⊆ U whenever A ⊆ U and U is regular open.
12. g#-closed [13], if cl(A) ⊆ U whenever A ⊆ U and U is αg-open.
13. g* α closed [15], if acl(A) ⊆ G whenever A ⊆ G and G is ga-open in (x, τ).

Definition 1.2. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be

1. \(\alpha \)-continuous [9], if for each open set \(v \in \sigma \), \(f^{-1}(v) \) is \(\alpha \)-open in \((X, \tau) \).
2. \(\alpha \) g-continuous [2], if for each open set \(v \in \sigma \), \(f^{-1}(v) \) is \(\alpha \) g-open in \((X, \tau) \).
3. \(g \alpha \) -continuous [2], if for each open set \(v \in \sigma \), \(f^{-1}(v) \) is \(g \alpha \) -open in \((X, \tau) \).
4. \(w g \alpha \) -continuous [16], if for each open set \(v \in \sigma \), \(f^{-1}(v) \) is \(w g \alpha \) -open in \((X, \tau) \).
5. \(w \alpha \) g-continuous [16], if for each open set \(v \in \sigma \), \(f^{-1}(v) \) is \(w \alpha \) g-open in \((X, \tau) \).

2. \(g^* \alpha \)-I-closed set

Definition 2.1 A subset \(A \) of an Ideal Topological space \((x, \tau, I)\) is said to be, \(g^* \alpha \)-I-closed set \(\alpha cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is ga-open in \(x \).

The complement of \(g^* \alpha \)-I-closed set is \(g^* \alpha \)-I-open.

Proposition 2.2 Every closed set is \(g^* \alpha \)-I-closed set but not conversely.

Proof. Let \(A \) be a closed set and let \(U \) be ga-open set containing \(A \). Then \(A \subseteq U \). This implies that \(cl(A) \subseteq U \). Also \(\alpha cl(A) \subseteq cl(A) \subseteq U \). Therefore \(\alpha cl(A) \subseteq U \). Hence \(A \) is \(g^* \alpha \)-I-closed.

Example 2.3 Let \(x = \{a, b, c\} \), \(\tau = \{\phi, \{a\}, \{a, b\}, x\} \) and \(I = \{\phi, \{c\}\} \). Then \(A = \{b\} \) is \(g^* \alpha \)-I-closed but not in closed set.

Proposition 2.4 Every regular closed set in \(g^* \alpha \)-I-closed set but not conversely.

Proof. Let \(A \) be regular closed set and let \(U \) be ga-open set containing \(A \). Then \(A \subseteq U \). This implies that \(cl(int(A)) \subseteq U \). \(cl(int(A)) \subseteq cl(int(cl(A))) \subseteq U \) and \(AUcl(int*(cl(A))) \subseteq cl(int(cl(A))) \).

But \(AUcl (int*(cl (A))) = \alpha cl(A) \subseteq U \). Therefore \(A \) is \(g^* \alpha \)-I-closed.

Example 2.5 Let \(x = \{a, b, c\} \), \(\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, x\} \) and \(I = \{\phi, \{c\}\} \). Then \(A = \{a\} \) is \(g^* \alpha \)-I-closed but not in regular closed.

Proposition 2.6 Every \(\alpha \)-closed set is \(g^* \alpha \)-I-closed set but not conversely.

Proof. Assume that \(A \) is \(\alpha \)-closed set and let \(U \) be ga-open set containing \(A \). Then \(A \subseteq U \). This implies that \(acl(A) \subseteq U \). Since every \(\alpha I \)-closed set is \(\alpha \)-closed. Then \(\alpha acl(A) \subseteq acl(A) \subseteq U \). Therefore \(\alpha acl(A) \subseteq U \). Hence \(A \) is \(g^* \alpha \)-I-closed.

Example 2.7 Let \(x = \{a, b, c\} \), \(\tau = \{\phi, \{a\}, \{a, b\}, x\} \) and \(I = \{\phi, \{c\}\} \). Then \(A = \{a, c\} \) is \(g^* \alpha \)-I-closed but not in \(\alpha \)-closed.

Proposition 2.8 Every \(g^* \alpha \)-I-closed set is \(\alpha \)-closed, \(\alpha g \)-closed set but not conversely.

Example 2.9 Let \(x = \{a, b, c\} \), \(\tau = \{\phi, \{a\}, x\} \) and \(I = \{\phi, \{a\}\} \). Then \(A = \{b\} \) is \(\alpha \)-closed and \(\alpha g \)-closed but not in \(g^* \alpha \)-I-closed.

Proposition 2.10 Every \(g^* \alpha \)-I-closed is \(wg \alpha \)-closed and \(w \alpha g \)-closed set but not conversely.

Example 2.11 Let \(x = \{a, b, c\} \), \(\tau = \{\phi, \{a\}, x\} \) and \(I = \{\phi, \{c\}\} \). Then \(A = \{c\} \) is \(wg \alpha \)-closed, \(w \alpha g \)-closed but not in \(g^* \alpha \)-I-closed.

Remark 2.12 The following examples shows that the concept of semi-closed and \(g^* \alpha \)-I-closed sets are independent.

Example 2.13 Let \(x = \{a, b, c\} \), \(\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, x\} \) and \(I = \{\phi, \{a\}\} \). Then \(A = \{b\} \) is semi closed but not \(g^* \alpha \)-I-closed set.

Example 2.14 Let \(x = \{a, b, c\} \), \(\tau = \{\phi, \{a\}, \{a, b\}, x\} \) and \(I = \{\phi, \{a\}\} \) Then \(A = \{a, c\} \) is \(g^* \alpha \)-I-closed set but not semi closed.
Remark 2.15 The following example shows that the concept of g-closed and g^α-I-closed sets are independent.

Example 2.16 Let $x = \{a, b, c\}$, $\tau = \{\{a\}, x\}$ and $I = \{\{a\}\}$. Then $A = \{a, b\}$ is g-closed but not g^α-I-closed.

Example 2.17 Let $x = \{a, b, c\}$, $\tau = \{\{a\}, \{a, b\}, x\}$ and $I = \{\{a\}\}$. Then $A = \{b\}$ is g^α-I-closed but not g-closed.

Proposition 2.18 Every g-closed set is g^α-I-closed but not conversely.

Proof. Let A be g-closed set and U be a regular open set containing A. Then U is g^α-open set containing A. Hence U and B are both g-open set. Therefore A is g^α-I-closed.

Example 2.19 Let $x = \{a, b, c\}$, $\tau = \{\{a\}, \{a, b\}\}$ and $I = \{\{a\}\}$. Then $A = \{a\}$ is g-closed but not in g^ν-closed.

Proposition 2.20 Every g^α-I-closed set is gs-closed but not conversely.

Proof. Let a subset A be g^α-I-closed and U be an open set containing A. Then U is g^ν-open set containing A. Since A is g^ν-closed. Therefore cl(A) \subseteq U. Hence every closed set is g^α-closed set.

Example 2.21 Let $x = \{a, b, c\}$, $\tau = \{\{a\}, \{a, b\}, \{a, b\}, x\}$ and $I = \{\{a\}\}$. Then $A = \{a\}$ is g-closed but not in g^α-I-closed.

Proposition 2.22 Every g^α-I-closed set is gr-closed but not conversely.

Proof. Assume that A is g^α-I-closed set in (x, τ, I) and let U be regular open set. Since every regular open set is g^ν-open set. Therefore A \subseteq U. Hence A is gr-closed.

Example 2.23 Let $x = \{a, b, c\}$, $\tau = \{\{a\}, \{a, b\}\}$ and $I = \{\{a\}\}$. Then $A = \{a\}$ is gr-closed but not in g^α-I-closed.

Proposition 2.24 Every g^α-I-closed set is gpr-closed.

Proof. By above proposition g^α-I-closed set is g^ν-closed. But every g^ν-closed set is gpr-closed. Hence every g^α-I-closed set is gpr-closed.

Proposition 2.25 Every g^α-I-closed set is g^α-closed set.

Proof. Let A be g^α-I-closed in (x, τ, I). Then we have

$\alpha cl(A)$ whenever $A \subseteq U$ and U is g^ν-open

- $A \subseteq \{\text{int}(\text{cl}(\text{int}(A)))\} \subseteq \text{int}(\text{cl}(\text{int}(A)))$
- $\alpha cl(A)$

This shows that A is g^α-closed.

Example 2.26 Let $x = \{a, b, c\}$, $\tau = \{\{a\}, x\}$ and $I = \{\{c\}\}$. Then $A = \{b\}$ is g^α-closed but not g^α-I-closed.

Proposition 2.27 Union of two g^α-I-closed sets is g^α-I-closed.

Proof. Let A and B be g^α-I-closed in X. Let U be a g^ν-open in X. Such that U. Then $A \subseteq U$ and $B \subseteq U$. Hence $\alpha cl(A \cup B) = \alpha cl(A) \cup \alpha cl(B) \subseteq U$. Therefore $A \cup B$ is g^α-I-closed.

Remark 2.28 i) The intersection of any two g^α-I-closed set is g^α-I-closed set.

ii) Suppose $I = \{\phi\}$, then the notion of g^α-I-closed set coincide with g^α-closed set.

Remark 2.29 For the subsets defined above, we have the following implications.
None of the implications is reversible.

3. **g**\(^*\)α-I-continuity

Definition 3.1. A function \(f:(X,\tau,I)\rightarrow(Y,\sigma)\) is said to be \(g\)\(^*\)α-I-continuous if the inverse image of every closed set in \((Y,\sigma)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\).

Definition 3.2. A function \(f:(X,\tau,I)\rightarrow(Y,\sigma,J)\) is said to be \(g\)\(^*\)α-I-irresolute, if the inverse image of every \(g\)\(^*\)α-I-closed set in \((Y,\sigma,J)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\).

Remark 3.3. If \(I=\{\emptyset\}\), the notion of \(g\)\(^*\)α-I-continuous coincides with the notion of \(g\)\(^*\)α-continuous.

Theorem 3.4.

i) Every continuous function is \(g\)\(^*\)α-I-continuous.

ii) Every α-continuous function is \(g\)\(^*\)α-I-continuous.

Proof: i) Assume that \(f:(X,\tau,I)\rightarrow(Y,\sigma)\) is a continuous function. Let \(V\) be any closed set in \((Y,\sigma)\). Then \(f^{-1}(V)\) is closed. Since every closed is \(g\)\(^*\)α-I-closed set. Hence \(f^{-1}(x)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\). Therefore \(f\) is \(g\)\(^*\)α-I-continuous.

ii) Since every continuous function is α-continuous. Therefore \(f\) is \(g\)\(^*\)α-I-continuous.

Remark 3.5. The above theorem need not be true as seen from the following examples.

Example 3.6. Let \(X=\{a,b,c\}, \tau=\{\phi,a,\{a,b\},X\}, \sigma=\{\phi,\{b\},X\}\) and \(I=\{\phi,\{c\}\}\). Let \(f:(X,\tau,I)\rightarrow(X,\sigma)\) be defined by \(f(a)=a, f(b)=b, f(c)=c\) then \(f\) is \(g\)\(^*\)α-I-continuous but not continuous.

Example 3.7. Let \(X=\{a,b,c\}, \tau=\{\phi,\{a\},\{a,b\},X\}, \sigma=\{\phi,\{a,c\},X\}\) and \(I=\{\phi,\{c\}\}\). Let \(f:(X,\tau,I)\rightarrow(X,\sigma)\) be defined by \(f(a)=a, f(b)=b, f(c)=c\) then \(f\) is \(g\)\(^*\)α-I-continuous but not α-continuous.

Theorem 3.8. A map \(f:(X,\tau,I)\rightarrow(Y,\sigma)\) is \(g\)\(^*\)α-I-continuous iff the inverse image of every closed set is \((Y,\sigma)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\).

Proof: **Necessity:** Let \(V\) be an open set in \((Y,\sigma)\). Since \(f\) is \(g\)\(^*\)α-I-continuous, \(f^{-1}(V)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\). But \(f^{-1}(V)=X=f^{-1}(V)\). Hence \(f^{-1}(V)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\).

Sufficiency: Assume that the inverse image of every closed set in \((Y,\sigma)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\). Let \(V\) be a closed set in \((Y,\sigma)\). By our assumption \(f^{-1}(V)=X=f^{-1}(V)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\) which implies that \(f^{-1}(V)\) is \(g\)\(^*\)α-I-closed in \((X,\tau,I)\). Hence \(f\) is \(g\)\(^*\)α-I-continuous.

Theorem 3.9. For a function \(f:(X,\tau,I)\rightarrow(Y,\sigma)\), the following hold

1. Every \(g\)\(^*\)α-I-continuous function is α-continuous.
2. Every \(g\)\(^*\)α-I-continuous function is αg-continuous.
3. Every \(g\)\(^*\)α-I-continuous function is $\omega g\alpha$-continuous.
4. Every \(g\)\(^*\)α-I-continuous function is $\omega g\alpha$-continuous.
Remark 3.10. The converses of the above theorem need not be true as seen from the following examples.

Example 3.11. Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \sigma = \{\phi, \{a, b\}, X\} \) and \(I = \{\phi, \{a\}\} \). Let the function \(f: (X, \tau, I) \rightarrow (X, \sigma) \) be defined by \(f(a) = a, f(b) = b, f(c) = c \) then the function \(f \) is \(g \alpha \)-continuous, \(w g \alpha \)-continuous, \(w g \alpha \)-continuous but not \(g^* \alpha \)-I-continuous.

Example 3.12. Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}, \sigma = \{\phi, \{a\}, X\} \) and \(I = \{\phi, \{a\}\} \). Let the function \(f: (X, \tau, I) \rightarrow (X, \sigma) \) be defined by \(f(a) = a, f(b) = b, f(c) = c \) then the function \(f \) is \(g \alpha \)-continuous but not \(g^* \alpha \)-I-continuous.

Theorem 3.13. For a function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) the following hold.
1. Every \(g^* \alpha \)-I-continuous function is \(g \alpha \)-I-continuous.
2. Every \(g^* \alpha \)-I-continuous function is \(a g \alpha \)-I-continuous.
3. Every \(g \alpha \)-I-continuous function is \(w g \alpha \)-I-continuous.
4. Every \(g^* \alpha \)-I-continuous function is \(w g \)-I-continuous.

Remark 3.14. The converses of the above examples need not be true as seen from the following examples.

Example 3.15. i) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}, I = \{\phi, \{a\}\} \) and \(\sigma = \{\phi, \{a\}, X\} \). Let the function \(f: (X, \tau, I) \rightarrow (X, \sigma) \) be defined by \(f(a) = a, f(b) = b, f(c) = c \) then the function \(f \) is \(a g \alpha \)-continuous, \(w g \alpha \)-I-continuous, \(g \alpha \)-I-continuous but not \(g^* \alpha \)-I-continuous.

ii) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}, I = \{\phi, \{a\}\} \) and \(\sigma = \{\phi, \{c\}, X\} \). Let the function \(f: (X, \tau, I) \rightarrow (X, \sigma) \) be defined by \(f(a) = a, f(b) = b, f(c) = c \) then the function \(f \) is \(g \alpha \)-continuous but not \(g^* \alpha \)-I-continuous.

Theorem 3.16. Let \(f: X \rightarrow Y \) be a map. Then the following statements are equivalent:
(i) \(f \) is \(g^* \alpha \)-I-continuous.
(ii) the inverse image of each open set in \(Y \) is \(g^* \alpha \)-I-open in \(X \).

Proof: Assume that \(f: X \rightarrow Y \) is \(g^* \alpha \)-I-continuous. Let \(G \) be open in \(Y \). The \(G^c \) is closed in \(Y \). Since \(f \) is \(g^* \alpha \)-I-continuous, \(f^{-1}(G^c) \) is \(g^* \alpha \)-I-closed in \(X \). But \(f^{-1}(G^c) = X - f^{-1}(G) \). Thus \(f^{-1}(G) = g^* \alpha \)-I-open in \(X \).

Conversely assume that the inverse image of each open set in \(Y \) is \(g^* \alpha \)-I-open in \(X \). Let \(F \) be any closed set in \(Y \). By assumption \(c \) is \(g^* \alpha \)-I-open in \(X \). But \(f^{-1}(F^c) = X - f^{-1}(F) \). Thus \(X - f^{-1}(F) = g^* \alpha \)-I-open in \(X \) and so \(f^{-1}(F) \) is \(g^* \alpha \)-I-closed in \(X \). Therefore \(f \) is \(g^* \alpha \)-I-continuous. Hence (i) and (ii) are equivalent.

Theorem 3.17. Let \(X = A \cup B \) be a topological space with topology \(\tau \) and \(Y \) be a topological space with topology \(\sigma \). Let \(f: (A, \tau/A) \rightarrow (Y, \sigma) \) and \(g: (B, \tau/B) \rightarrow (Y, \sigma) \) be \(g^* \alpha \)-I-continuous maps such that \(f(x) = g(x) \) for every \(x \in A \cap B \). Suppose that \(A \) and \(B \) are \(g^* \alpha \)-closed sets in \(X \). Then the combination \(\alpha: (X, \tau, I) \rightarrow (Y, \sigma) \) is \(g^* \alpha \)-I-continuous.

Proof: Let \(F \) be any closed set in \(Y \). Clearly \(\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F) = C \cup D \) where \(C = f^{-1}(F) \) and \(D = g^{-1}(F) \).

But \(C \) is \(g^* \alpha \)-I-closed in \(A \) and \(A \) is \(g^* \alpha \)-I-closed in \(Y \) and so \(C \) is \(g^* \alpha \)-closed in \(X \). Since we have proved that if \(B \subseteq A \subseteq X \), \(B \) is \(g^* \alpha \)-I-closed in \(A \) and \(A \) is \(g^* \alpha \)-I-closed in \(X \). Also \(C \cup D \) is \(g^* \alpha \)-I-closed in \(X \). Therefore \(\alpha^{-1}(F) \) is \(g^* \alpha \)-I-closed in \(X \). Hence \(\alpha \) is \(g^* \alpha \)-I-continuous.

Theorem 3.18. Let \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) is \(g^* \alpha \)-I-continuous and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) is continuous, then \(g \circ f: (X, \tau, I) \rightarrow (Z, \eta) \) is \(g^* \alpha \)-I-continuous.

Proof. Let \(g \) be a continuous function and \(v \) be any open set in \((z, \eta) \) then \(f^{-1}(v) \) is open in \((z, \eta) \) then \(f^{-1}(v) \) is open in \((Y, \sigma) \). Since \(f \) is \(g^* \alpha \)-I-continuous. \(f^{-1}(g^{-1}(v)) = (g \circ f)^{-1}(v) \) is \(g^* \alpha \)-I-open in \((X, \tau, I) \). Hence \((g \circ f) \) is \(g^* \alpha \)-I-continuous.

Theorem 3.19. Let \(f: (X, \tau, I) \rightarrow (Y, \sigma, J) \) and \(g: (Y, \sigma, J) \rightarrow (Z, \eta, K) \) are \(g^* \alpha \)-I-irresolute then \(g \circ f: (X, \tau, I) \rightarrow (Z, \eta, K) \) is \(g^* \alpha \)-I-irresolute.
Proof. Let g be a $g^\ast\alpha$-α-I-irresolute function and v be any $g^\ast\alpha - K$-open in (Z, η, K), then $f^{-1}(V)$ is $g^\ast\alpha - J$-open in (Y, σ, J).

Since f is $g^\ast\alpha$-α-I-irresolute, $f^{-1}(g^{-1}(v)) = (g \circ f)^{-1}(v)$ is $g^\ast\alpha - I$-open in (X, τ, I). Hence $(g \circ f)$ is $g^\ast\alpha$-α-I-irresolute.

Theorem 3.20. Let $f: X \to Y$ and $g: Y \to Z$ be any two functions. Let $h = g \circ f$. Then:

(i) h is $g^\ast\alpha$-α-I-continuous if f is $g^\ast\alpha$-α-I-irresolute and g is $g^\ast\alpha$-α-I-continuous,

(ii) h is $g^\ast\alpha$-α-I-continuous if g is continuous and f is $g^\ast\alpha$-α-I-continuous.

Proof. Let V be closed in Z. (i) Suppose f is $g^\ast\alpha$-α-I-irresolute and g is $g^\ast\alpha$-α-I-continuous. Since g is $g^\ast\alpha$-α-I-continuous, $g^{-1}(V)$ is $g^\ast\alpha$-α-I-closed in Y. Since f is $g^\ast\alpha$-α-I-irresolute, by definition, $f^{-1}(g^{-1}(V))$ is $g^\ast\alpha$-α-I-closed in X. This proves (i).

(ii) Let g be continuous and f be $g^\ast\alpha$-α-I-continuous. Then $g^{-1}(V)$ is closed in Y. Since f is $g^\ast\alpha$-α-I-continuous, using the definition, $f^{-1}(g^{-1}(V))$ is $g^\ast\alpha$-α-I-closed in X. This proves (iii).

REFERENCES

